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a simulation to demonstrate our approach. Type I error was well-controlled and no control group was falsely flagged for cheating, 
while 16 (combined n=12,569) of the 18 (combined n=14,149) simulated groups were detected. Implications for system-level 
cheating detection and further improvements of the approach were discussed. 
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Introduction 

Cheating on standardised assessments can occur at an individual level or systematically (e.g., classroom-, school-, or 
even district-level). In both situations, cheating has serious consequences and therefore there is a long history of 
various methods for detecting cheating. Chajewski and colleagues (2014) provide a comprehensive discussion of 
various methods of fraud detection and macro level screening systems. These methods can be categorised into two 
main groups: 1) non-statistical techniques (e.g., surveillance, audit and monitoring, field reports) and 2) statistical 
techniques (e.g., checking for unusual changes in performance over time, and data-mining). 

In the context of large-scale testing that is taken only once by an individual, non-statistical techniques can be 
impractical and some statistical methods such as trend-analysis are not applicable. It is logistically impractical to 
undertake large-scale surveillance and there are limited sources of supplementary performance data to use for 
statistical techniques based on comparisons over time. Although there are other non-statistical methods that may be 
useful in large-scale testing, and we recommend that several complementary techniques be used, the scope of this 
paper is limited to statistical techniques. The method discussed in this paper therefore focuses on data-mining of 
responses from a single test administration such as end-of-year examination. 

At a pairwise level, evidence for cheating is based on observation of matching correct and/or matching incorrect 
answers from the source to the copier. Several indices for detecting answer copying have been developed over the 
years with varying degrees of effectiveness. Below are examples of answer-copying indices that have been reported in 
the literature as among the most effective:  

 Omega (ω) index (Wollack, 1997) 
 Generalized binomial test (GBT) (van der Linden & Sotaridona, 2006) 
 S1 and S2 indices (Sotaridona & Meijer, 2003) and the conceptually similar precursors, the K index (Holland, 

1996) and K-variants (Sotaridona & Meijer, 2002) 
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The ω and GBT indices are based on item response theory (IRT) while the S1 and S2 indices are based on classical test 
theory (CTT). Individual-level statistical approaches often provide more comprehensive evidence than broader group-
based statistical approaches such as score distribution analyses. Therefore we are using an approach that was designed 
to detect cheating at an individual level but adapting it for large scale implementation. 

For this study, the ω index was chosen as the most appropriate for the data and because it is well-established as among 
the most useful indices in the literature. The mathematical details of the ω index are described below but additional 
details of the other indices can be found in the literature (see Holland, 1996; Sotaridona & Meijer, 2003; van der Linden 
& Sotaridona, 2006).  

The ω index is computed by standardising the difference between the expected number of answer matches and the 
observed number of matches for a given pair of students. This given pair will be designated as the “copier” (C) and the 
“source” (S) hereafter. The probability of the expected number of matches – given S’s answers, C’s ability, and item 
parameters – is computed via IRT.  

The IRT-based indices take into account the estimated latent abilities of the individuals being compared in computing 
the expected matches, whereas CTT-based indices rely on raw score as the main indicator of ability and compute the 
probabilities of matching items based on either the binomial (for K and K-variants) or Poisson (for S2) distributions 
without taking into account the latent abilities of the examinee pair (see Holland, 1996; Sotaridona & Meijer, 2002). The 
GBT index, while IRT-based, models the probability of an answer match using also the binomial distribution. The IRT-
based indices work with dichotomously scored items (i.e., scored correct-incorrect) with the latent ability estimated 
using 2-3PL models† (Birnbaum, 1968) or with raw responses with the ability estimated using a Nominal Response 
Model (NRM). 

In particular, using the NRM (Bock, 1972), the probability for C responding with S’s response for item i(UiS) is given as: 

  (   )  
exp(  S    S  )

∑ exp(        C)
 
   

 

where ξ and λ represent the item intercept and slope parameters respectively; K and m represent the number of 
response categories and response category indicator respectively; and θC represents C’s ability. 

The ω index is then calculated as: 

  
 CS ∑  C(  S)

 
   

  CS

, where hCS represents the observed match between C and S across n total number of items. The 

standard error of the difference between the expected and observed matches is computed as: 

 
 CS √∑  C(  S)(   C(  S))

 
   

 

The values of ω are asymptotically normally distributed and standard null hypothesis statistical testing can be applied, 
where the null hypothesis is rejected for values of ω greater than a critical value (Wollack, 2004).  

The logic behind all answer-copying indices is that the evidence of cheating can be found in matching response patterns 
(either matching correct or incorrect items) that are beyond the expected number of matches. That is, the indices 
statistically model if answer-matches have occurred beyond what can be attributed to random chance. 

Large-scale implementations of cheating detections method based on IRT-based answer-copying indices have 
limitations that fall into two main areas: psychometric and logistic limitations. These limitations and proposed ways to 
mitigate them are discussed below. 

Psychometric limitations and proposed mitigation 

The main psychometric limitation of this method – indeed all IRT-based models – is that the ability estimates are 
contaminated by systematic error in the response pattern (Wollack & Cohen, 1998). In the context of cheating analysis, 
the response pattern of the copier affects the ability estimates and therefore confounds the probability of expected 
matches.  

The impact of contaminated response pattern on the estimation of item and person parameters has long been 
investigated. Levine and Drasgow (1982) have shown that aberrant-response detection methods‡ are robust even when 
the aberrant response patterns were included in the IRT parameter estimation. However, this may be true when the 

                                                        
† In 2- and 3PL models, unlike Rasch or 1PL models, the raw score is no longer a sufficient statistic for estimating latent abilities and the complete 
response pattern needs to be taken into account. 

‡ Levine & Drasgow were investigating “appropriateness indices”, which can be considered analogous to answer-copying indices, albeit at an 
individual level rather than between pairs. These indices (see Levine & Rubin, 1979) measure the extent to which a response pattern in a multiple-
choice test is not an appropriate measure of ability due to various reasons including, but not limited to, cheating.  



 European Journal of Educational Research 1309 
 

context is individual-level cheating. When the proportion of aberrant response is low relative to the population, the 
impact might not be substantial. The magnitude of contamination might be different if the context is systematic 
cheating, in which cheating is prevalent across classes, schools, or even districts. Also, even if the item parameter 
estimation might be robust against aberrant response patterns, ability estimates are directly determined by the 
response patterns regardless of whether these are honest or not. 

To mitigate this psychometric limitation, theta can be estimated using additional information. Estimating theta, either 
through maximum likelihood or Bayesian estimators, would be as follows: 

 ̂   (       ), where   is the matrix of item parameters (e.g., ξ and λ), Uj = (U1i, U2i, …Uji) is the vector of item 

responses to i items by examinee j, and the expectation Y refers to either the maximum likelihood or the mean or mode 
of the posterior distribution of theta (EAP or MAP respectively) depending on the type of estimator. 

Theta is latent and therefore it can be conceptualised as missing data that is estimated from a set of observed data 
(Bock & Aitkin, 1981; Rubin, 1987). Because θ is unobservable, Uj is our only observed and yet always incomplete data 
(Dempster, Laird, & Rubin, 1977).  

The accuracy of theta can therefore be improved by increasing the number of items used to estimate it. Viewed another 
way, we can use a fuller set of test response data (Taugmented) to estimate theta even if we are only concerned with a 
subset (Tinvestigated) for our cheating analysis purposes. Thus, the vector of item responses includes more items than the 
set of items used for computing ∑  C(  S)    {     investigated}

 
   : 

      for items   {     augmented} where  investigated    augmented  ; and provided item independence holds, any items that 

belong to the relative complement of Tinvestigated in Taugmented can be used to augment the estimation of theta. 

Augmenting the information needed to estimate the latent trait mitigates another related limitation. All answer-copying 
indices suffer from an inherent weakness when applied to groups with ability that is more homogeneous especially if 
they are on the tails of the distribution – that is, a group composed of uniformly high or low performers (Sunbul & 
Yormaz, 2018). Because all answer-copying indices are based on matching answers, as the group becomes more 
homogeneous the chances of matching answers increase even without copying. It becomes more difficult to 
discriminate between honest and dishonest matches in more homogeneous groups with performance in the tails of the 
distribution. The extent of homogeneity can be decreased as we include more items in estimating theta.  

For the target (or investigated) test itself, having a more diverse set of items (so that the variance in test score is 
increased) and increasing the test length has been found to improve detection rates (Sotaridona & Meijer, 2002; 
Wollack, 1997). Answer-copying indices also work better when the test items are more difficult because homogeneous 
groups of students with lower ability are less likely to be misdetected (Zopluoglu & Davenport, 2012). For those who 
are uniformly low in ability, there is a higher likelihood of guessing and so it is less likely that the few items they have 
answered correctly will be the same matching items. For the group with high ability, however, it is more likely that 
students will be incorrect on the same (difficult) items as well as a lower chance of guessing on easier items.  

Logistic limitations and proposed mitigation 

The next main limitation, concerning logistics, becomes increasingly important as the scale that this method is applied 
becomes larger. The answer-copying indices were originally designed to detect cheating on an individual basis and 
requires the specific designation of the source and cheater. The indices would yield different values for A = source and 
B = cheater versus B = source and A = cheater. This implies that to use these indices in a large-scale setting and in the 
context of systematic cheating, the indices would need to be computed for all possible pair permutations. The number 
of computations required increases very quickly as can be seen by the number of pair permutations given by the 
formula: 

  

(   ) 
 , where g=sample of students and k=2 because we are selecting pairs. 

In the context of systematic cheating, such as in a situation where cheating occurs at school-level, testing all possible 

pairs in a single school with 500 students in any grade level would require computation of the indices for 
    

(     ) 
 = 

249,500 pair permutations. Although schools of this size may seem unusually large for developed countries, even 
classes often have more than 100 students in the developing world (Benbow et al., 2007). Even disregarding pair-

ordering, it would still require computing 
  

  (   ) 
 = 

    

  (     ) 
 = 124,750 index values. In systems with thousands of 

schools, the number of pair combinations can quickly run to the hundreds of millions. Perhaps this is not an 
insurmountable challenge for developed countries, but many countries in the developing world• may have more 

                                                        
• As a recent example, large-scale cheating has been reported as common in Bihar, India  a state with population larger than many countries in 
Europe (British Broadcasting Corporation, 2015). 
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constrained time and computational resources – precisely the countries that lack more extensive capabilities to prevent 
cheating and where the impact of systematic cheating can be more damaging. 

While approaches based on answer-copying indices have been reported in the literature for several decades, computing 
these indices previously required specialised code. It was relatively recently that packages based on open-source 
languages have been available to specifically compute some of these indices. We adapted CopyDetect (Zopluoglu, 
2013), an R language (R Core Team, 2016) package, to compute the ω index that we report here. The computation of 
the item parameters and estimation of the thetas were done using another R package, mirt (Chalmers, 2012). The 
computations involved are substantial:  

 The parameters ξ and λ need to be estimated per response category per item 
 The ability estimate  ̂ needs to be calculated per student  
 The probability for C responding with S’s response, PC(UiS), needs to be calculated per item per student 
 The observed match, hCS, needs to be counted per pair 
 The ω index and corresponding p-value need to be calculated per pair 

This is why it is important to make the process as efficient as possible. To implement a method using IRT-based indices 
on large-scale systematic cheating contexts, we propose that the investigation proceeds in stages, with each stage 
filtering possible suspects efficiently. The proposed two-stage approach is summarised as follows: 

 Stage 1 

− Compute the ω index values for all students paired with a “supersource” – a hypothetical student who 
has a nearly-complete test key for the multiple choice questions and therefore a “source” for the 
cheater. For this stage, statistical significance was set at α=.05. Cases with statistically significant ω 
index values were designated as suspected. 

− Flag groups which have proportion of suspected students greater than the nominal Type I error rate 
for Stage 1. 

 Stage 2 

− Create a set of set of all pair combinations from each flagged group in Stage 1: (
 
 
)  

  

  (   ) 
 pairs per 

group. Where g=number of cases in the group, and k=2. 

− Randomly sample 500 pairs from (
 
 
) – the set of all pair combinations per group. 

− Compute ω index values for these sampled pairs from each of flagged group in Stage 1. For Stage 2, 
statistical significance was set more conservatively at α=.01. 

− Flag groups which have the proportion of suspected students greater than the nominal Type I error 
rate for Stage 2. 

The first stage requires a conceptual shift where instead of attempting to detect all pairs copying from each other, we 
first only attempt to detect groups of students copying from a single source and assume that cheating is largely 
successful. Differing from individual copying, we assume that if there is systematic cheating, the copied answers are 
almost always the correct answer (such as system-level cheating through test-form or even answer-key leakage). In the 
exploratory Stage 1, we base all pair comparisons as having a single source (i.e., everybody is copying from one person, 
with varying degrees of copying effectiveness). We can think of this source as having the test key, or having a role of a 

“supersource”, where all or most answers are correct. Therefore, instead of computing 
  

(   ) 
 or even 

  

  (   ) 
 index 

values, we only need to compute g values per group, massively reducing the amount of computations involved by a 

factor of 
   

 
 for pair combinations (i.e., k=2). 

This approach will yield only a preliminary evidence of cheating given the less stringent alpha level (i.e., a more liberal 
criterion for statistical evidence of cheating). However at this first stage, we are only concerned with detecting broad 
patterns at a group level. Groups that are shown to have patterns of unusual index values relative to the general 
population will be examined in more detail in the second stage confirmatory approach.  

In the second stage, a random selection of pairs from each of the flagged groups will be statistically tested using a more 
stringent alpha level of α = .01. For pairs with index values that fall above the critical values, we reject the null 
hypothesis that no cheating has occurred between the pair.  

The sampled pairs are across all flagged groups, thereby assuming that the cheating pattern is similar although there 
might be differences in extent and pattern from one group to the other. For example, some groups may have used only a 
portion of the leaked key while others used the entire key. Unlike Stage 1, which compares individual responses versus 
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a single response pattern, Stage 2 computes the indices from a sample of pairs within these groups, looking for more 
detailed evidence of cheating that is specific to the group. 

The nominal Type I error rate for cheating detection in both stages is alpha. We should expect to reject the null 
hypothesis due to random chance alone for the proportion of all pairs equal to or less than alpha. If the empirical 
rejection rate for the sample in the group exceeds alpha, this can be interpreted as evidence that there is systematic 
cheating in the group.  

Method 

Data 

The data used for the comparison groups were based on publicly available raw response data from PIRLS 2011 
(International Association for the Evaluation of Educational Achievement [IEA], 2012). Due to possible 
misinterpretation of results, and to emphasise that this paper is not about investigating cheating among the PIRLS 
participants, a subset has been randomly selected and all identifiers have been removed. This subset (N= 64,232) is 
used as the analysis data throughout this paper. The subset was based on those who were administered a randomly 
chosen booklet (form 13). The main reason for choosing response data from a single booklet is that answer-copying 
indices require that the set of items are the same across the compared pairs. This subset is then grouped using 
IDCNTRY** as the arbitrary grouping variable, as IDSCHOOL would have resulted in too many groups that have smaller 
number of students per group because PIRLS is administered across 13 booklets per school. The main reasons PIRLS 
data were used are 1) they are publicly available, large-scale and include item-level response data, and 2) the rigorous 
testing process and multiple levels of security implemented†† in PIRLS provide credibility to use the data as the 
comparison (or non-cheating) group‡‡.  

The cheating groups were simulated by forming 18 random groups from the analysis data and simulating correct 
answers in various patterns (described below). Each group is about 1.2% of the original data, with sample sizes 
reported in Table 1. About 22% of the total data were therefore simulated to have system-level cheating in varying 
degrees (from less than 30% to 80% of items copied). The group sizes of the cheating groups are comparable to the 
remaining original cases in 57 comparison groups. 

Table 1: Group sample sizes 

Group ID Frequency Percent 
0001 795 1.2 
0002 965 1.5 
0003 778 1.2 
0004 674 1.0 
0005 836 1.3 
0006 3708 5.8 
0007 650 1.0 
0008 618 1.0 
0009 736 1.1 
0010 739 1.2 
0011 731 1.1 
0012 728 1.1 
0013 698 1.1 
0014 760 1.2 
0015 623 1.0 
0016 599 0.9 
0017 618 1.0 
0018 823 1.3 
0019 749 1.2 
0020 922 1.4 
0021 719 1.1 
0022 665 1.0 
0023 668 1.0 
0024 522 0.8 
0025 762 1.2 
0026 581 0.9 
0027 1229 1.9 
0028 1677 2.6 

                                                        
** The identifier for country, but the original PIRLS country codes were anonymised as the Group ID in Table 1.  
†† For more details on the operations and quality assurance of PIRLS, see Martin & Mullis (2012).  
‡‡ At this stage, this is a presumption based only on PIRLS test security and quality control. Later, we will examine if there is psychometric evidence 
based on our results if this presumption is justified. 
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0029 621 1.0 
0030 900 1.4 
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Table 1. Continued 

Group ID Frequency Percent 
0031 527 0.8 
0032 784 1.2 
0033 654 1.0 
0034 659 1.0 
0035 749 1.2 
0036 732 1.1 
0037 729 1.1 
0038 1070 1.7 
0039 939 1.5 
0040 719 1.1 
0041 545 0.8 
0042 1368 2.1 
0043 746 1.2 
0044 637 1.0 
0045 2369 3.7 
0046 2000 3.1 
0047 622 1.0 
0048 573 0.9 
0049 607 0.9 
0050 1108 1.7 
0051 1924 3.0 
0052 666 1.0 
0053 746 1.2 
0054 696 1.1 
0055 608 0.9 
0056 529 0.8 
0057 683 1.1 
641 811 1.3 
681 743 1.2 
742 803 1.3 
782 787 1.2 
843 786 1.2 
883 775 1.2 
941 782 1.2 
942 806 1.3 
943 777 1.2 
981 816 1.3 
982 799 1.2 
983 815 1.3 
6121 779 1.2 
7122 777 1.2 
8123 797 1.2 
9121 763 1.2 
9122 763 1.2 
9123 770 1.2 
Total 64232 100.0 

Note: The original PIRLS country codes were anonymised. The countries also cannot be deduced from the group sample 
size because a random number of students were taken from each group to form the cheating groups. The groups 
simulated to have cheating students are italicised. 

Implementation 

Form 13 has 35 items in total, with 15 multiple choice items and 20 constructed response items (IEA, 2012). The 
simulation of cheating was done only for the nominal response data. This means that the test length for the simulation 
is considerably shorter compared to other studies. For example, Romero and colleagues (2015) used a number of tests 
with lengths that range from 36 to 54 items while Wollack and Cohen (1998) used 40 and 80-item tests. The nominal 
response data have 4 categories for each item (multiple choice items with 4 options), while the constructed response 
were scored ranging from 0-3. Each group were simulated to have different patterns of cheating as shown in Table 2. 
Because the groups were simulated to be copying from a “supersource” with a perfect response pattern, the copied 
items are all correct. Responses that were originally coded as “not reached” or “omitted” remained unchanged. 
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Table 2: Cheating patterns by group 

Group ID Cheating group Cheating pattern 
641 First 4 Copied the first 4 items 
742 Middle 4 Copied the middle 4 items 
843 Last 4 Copied the last 4 items 
941 
942 
943 

Random 4 (3 sets) Copied random blocks totalling 4 items 

681 First 8 Copied the first 8 items 
782 Middle 8 Copied the middle 8 items 
883 Last 8 Copied the last 8 items 
981 
982 
983 

Random 8 (3 sets) Copied random blocks totalling 8 items 

6121 First 12 Copied the first 12 items 
7122 Middle 12 Copied the middle 12 items 
8123 Last 12 Copied the last 12 items 
9121 
9122 
9123 

Random 12 (3 sets) Copied random blocks totalling 12 items 

The additional information to augment the theta estimation came from the constructed response items. Constructed 
response items are generally more difficult to systematically cheat on. For example, leaking the answer keys would be 
more efficient in multiple-choice items. For our purposes in this paper, we assume that the constructed responses are 
honest. There were 3 scenarios (i.e., different sets of Taugmented) in terms of the extent of augmentation: 1) all 20 
constructed response items were included, 2) only 10 were included, and 3) only 5 were included.  

The parameters for the multiple choice and constructed response items were estimated using NRM and generalized 
partial credit (Muraki, 1992) models respectively. Expected A Posteriori (EAP) estimates were used as person 
measures (theta). The IRT modelling was implemented using mirt (Chalmers, 2012). The item parameters used for 
computing the ω index were estimated with the cheating groups included. This means that the item parameters are 
contaminated by aberrant responses, but this reflects real-world scenarios where it is difficult or even impossible to 
obtain a “clean” calibration sample.  

In Stage 1, all students in each group were designated as copiers and paired with the single “supersource”. The ω index 
was then computed for each pair. The statistical test for significance of the computed index values was on the null 
hypothesis that there is no cheating between the pair.  

We then computed the proportion of cases with ω values above the critical value at α = .05 within each group. This has 
the effect of computing the proportion of students that were designated as suspects. Groups which have a proportion of 
suspected students greater than the nominal Type I error rate (i.e., the proportion of suspects is greater than 5%) were 
flagged.  

Studies on Type I error rates of answer-copying indices have consistently shown that the empirical (or observed) Type 
I error rate of ω is lower than the nominal Type I error rate (e.g., Romero et al., 2015; Sotaridona & Meijer, 2003; 
Wollack, 2004). As such, it is expected that the rejection rate for the random pairs in the comparison (non-cheating) 
groups should not exceed the alpha level (i.e., the “detection rate” should not be more than the nominal Type I error set 
at alpha), and comparison groups that were flagged were considered as false positives. 

In Stage 2, a random sample of 500 pairs for each flagged group were chosen and ω values were computed for each 
pair. While adequate for our purposes of checking relative proportions, the sample is still a very small proportion of the 
actual number of pair-combinations for N = 500. A balance between making the results more reliable and the amount of 
computation time needs to be considered when increasing the sample. The pairs were now compared to each other 
rather than to a single “supersource”. We then proceeded with the same statistical test and computation of the 
proportion of suspected pairs as in Stage 1, except with a more conservative α = .01. 

Results 

Augmented theta estimation 

As discussed previously, there may be situations where the theta estimates are contaminated considerably by 
widespread cheating. This is reflected in our scenario where approximately 22% of the data were simulated to have 
varying degrees of systematic cheating. As shown in Figure 1, the distribution of ability estimates is severely skewed 
when only the “cheatable” items were included (i.e., only Tinvestigated). As more extra items were included in the ability 
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estimation, the distribution becomes more normal and the ability estimates become closer to what would be expected if 
there were no widespread cheating. 

 

Figure 1: Distribution of ability estimates by set of items used in the theta estimation. 

Stage 1 

The results for Stage 1 across all three scenarios of theta augmentation are reported in Table 3. As previously 
discussed, we assume that the comparison groups did not have systematic cheating and therefore those that were 
flagged can be treated as false positives. Similarly, simulated cheater groups that were not flagged can be treated as 
false negatives. 
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Table 3: Summary of results for Stage 1 

Group ID Proportion of suspects 
Augmented by 20 

CR items 
Augmented by 10 

CR items 
Augmented by 5 

CR items 
0001 3.1% 0.9% 0.4% 
0002 2.1% 1.6% 0.9% 
0003 3.1% 2.8% 2.3% 
0004 0.7% 0.3% 0.3% 
0005 3.8% 2.4% 0.5% 
0006 2.0% 0.8% 0.5% 
0007 1.7% 1.7% 0.3% 
0008 1.0% 0.3% 0.0% 
0009 3.7% 2.3% 0.8% 
0010 2.4% 1.5% 0.7% 
0011 4.5% 3.6% 1.8% 
0012 7.0% A 6.2% A 2.5% 
0013 2.9% 2.0% 1.4% 
0014 1.3% 1.3% 0.3% 
0015 3.0% 3.0% 2.2% 
0016 1.3% 0.5% 0.2% 
0017 2.9% 1.8% 0.8% 
0018 2.4% 1.3% 0.9% 
0019 0.3% 0.0% 0.1% 
0020 3.3% 1.3% 0.4% 
0021 4.3% 2.9% 1.4% 
0022 2.4% 1.4% 0.9% 
0023 2.5% 2.5% 1.0% 
0024 1.9% 1.7% 1.0% 
0025 1.6% 1.0% 0.7% 
0026 1.4% 0.5% 0.2% 
0027 0.5% 0.2% 0.1% 
0028 0.4% 0.4% 0.1% 
0029 2.7% 3.5% 1.6% 
0030 1.1% 0.7% 0.3% 
0031 2.3% 1.5% 0.4% 
0032 1.8% 1.1% 0.6% 
0033 1.5% 0.8% 0.6% 
0034 0.3% 0.5% 0.0% 
0035 5.6% A 2.3% 1.1% 
0036 4.5% 3.0% 0.5% 
0037 0.4% 0.4% 0.0% 
0038 2.1% 1.6% 1.3% 
0039 2.7% 1.2% 0.9% 
0040 4.0% 2.1% 1.5% 
0041 1.3% 0.4% 0.4% 
0042 3.7% 2.0% 1.5% 
0043 2.1% 1.5% 0.3% 
0044 0.9% 0.3% 0.2% 
0045 0.9% 0.7% 0.3% 
0046 2.4% 1.8% 1.2% 
0047 1.9% 1.9% 0.8% 
0048 3.3% 2.1% 0.5% 
0049 1.6% 2.1% 1.3% 
0050 1.4% 0.5% 0.3% 
0051 1.8% 1.4% 0.7% 
0052 0.2% 0.6% 0.2% 
0053 2.3% 0.4% 0.3% 
0054 2.0% 0.9% 0.3% 
0055 2.3% 1.6% 0.7% 
0056 3.2% 0.9% 0.6% 

0057 4.5% 2.6% 1.6% 
641 6.0% 1.6% B 0.6% B 
681 11.6% 6.6% 2.2% B 
742 3.4% B 2.0% B 1.0% B 
782 9.4% 6.1% 2.3% B 
843 6.5% 3.3% B 1.8% B 
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Table 3. Continued 

Group ID Proportion of suspects 
Augmented by 

20 CR items 
Augmented by 

10 CR items 
Augmented by 

5 CR items 
883 19.0% 9.7% 3.4% B 
941 5.4% 3.2% B 1.3% B 
942 7.2% 3.5% B 2.0% B 
943 3.2% B 1.8% B 0.9% B 
981 14.6% 6.9% 3.4% B 
982 18.6% 10.6% 4.3% B 
983 20.0% 13.1% 4.8% B 
6121 38.3% 25.2% 5.9% 
7122 39.0% 27.8% 8.2% 
8123 46.0% 31.4% 9.4% 
9121 49.1% 32.1% 9.3% 
9122 53.6% 35.8% 11.5% 
9123 63.4% 50.9% 16.4% 

Note: Italicised groups were simulated cheaters; proportions that exceed the nominal Type I error rate are bolded. 
A Stage 1 false positive 
B Stage 1 false negative 

When thetas were estimated using all available constructed response items, reducing the contamination of aberrant 
response on ability estimation, only two cheating groups with the lowest degree of simulated cheating were not 
flagged: cheating on the middle 4 items (Group 742) and random cheating on 4 items (Group 943). In addition, two of 
the comparison (non-cheating) groups were flagged. The number of false positives was reduced as fewer additional 
constructed response items were included in estimating ability, but the number of false negatives also increased. When 
only 5 constructed response items were used to augment theta, Stage 1 was only able to detect the groups with 80% 
copying. 

Stage 2 

The schools that were flagged in Stage 1 proceeded to Stage 2 analysis and results are reported in Table 4. All cheating 
groups that were flagged in Stage 1 were also flagged in Stage 2 (i.e., no false negatives). The only scenario where an 
honest group’s empirical Type I error rate exceeds the nominal value was when theta estimation only included 10 
constructed response items.  

Table 4: Summary of results for Stage 2 

Group ID Proportion of suspects 
Augmented by 20 

CR items 
Augmented by 10 

CR items 
Augmented by 5 

CR items 
0012 0.2% 1.2% A - 
0035 0.8% - - 
641 2.0% - - 
681 6.0% 4.8% - 
742 - - - 
782 2.6% 3.4% - 
843 3.0% - - 
883 6.4% 5.0% - 
941 1.8% - - 
942 1.8% - - 
943 - - - 
981 5.6% 1.4% - 
982 7.6% 7.2% - 
983 7.6% 5.0% - 
6121 15.0% 8.6% 3.8% 
7122 12.8% 5.0% 1.6% 
8123 14.2% 6.4% 2.0% 
9121 17.8% 11.4% 2.4% 
9122 19.8% 12.0% 4.2% 
9123 28.6% 17.8% 6.4% 

Note: Italicised groups were simulated cheaters; proportions that exceed the nominal Type I error rate are bolded. Blank cells mean 
that these groups were not flagged in Stage 1 and therefore were excluded for Stage 2 analysis.  
A Stage 2 false positive 
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The distribution of p-values for the sampled pairs in Stage 2 is shown in Figure 2. The two false negatives flagged in 
Stage 1 were no longer flagged in Stage 2, and it shows that ω index p-values of the sampled pairs are evenly 
distributed. It would be expected by chance that no more than 1% of p-values would be equal to or less than .01, and 
indeed groups 0012 and 0035 have 0.2% and 0.8% of sampled pairs with p-values < .01, respectively. The skew in the 
distributions of p-values becomes more pronounced as the number of simulated copied items increases. 

 

Figure 2: Distribution of p-values among sampled pairs in Stage 2. This shows index values computed using the fully 
augmented theta estimates only. 

For the simulated cheating groups, statistical power of the ω index as applied in this setting corresponds to the 
proportion of pairs that have ω index values reject the null hypothesis. As shown in Table 4, the power is increasing as 
the degree of cheating increases. This is not surprising and confirms results from other studies (see Romero et al., 
2015; Sotaridona & Meijer, 2002; Sotaridona & Meijer, 2003; Wollack, 1997; Wollack, 2004). The results show 
comparatively lower levels of power, but this can be expected given that the index was computed for only 15 items and 
power of the ω index has been found to be affected by test length (Sotaridona & Meijer, 2002; Wollack, 1997). 

Precision and specificity analysis 

The main purpose of this paper is to demonstrate the viability of this approach and we recommend that other 
researchers try to replicate this using much richer datasets and preferably with actual (rather than simulated) 
systematic cheating. To provide some idea as to the group-level precision and specificity of this approach, we 



 European Journal of Educational Research 1319 
 

conducted a limited supplemental analysis where we explored a scenario with more restrictive Stage 1 and several 
incrementally restrictive second stages based on the original and the more restrictive Stage 1. Each scenario is a 
separate replication, although the corresponding second stages are dependent on the results from their respective first 
stages. The Stage 2 results for the more restrictive Stage 1 (with α1 = .01) are reported in Table 5.  

Table 5: Summary of results from supplementary Stage 2 analyses 

Group ID Proportion of suspects 
α1 = .01 
α2 = .001 α2 = .0005 α2 = .0001 α2 = .00005 

0024 .002A <.0005 .0002A <.00005 
681 .006 0.003 .0002 .0004 
883 .012 0.007 .0016 .0012 
981 .004 0.003 .0002 .0006 
982 .008 0.013 .0024 .0008 
983 .014 0.004 .0016 .0006 
6121 .012 0.007 .0004 .0004 
7122 .020 <.0005B .0002 <.00005B 
8123 .022 0.009 .0012 .0002 
9121 .030 0.016 .0034 .0034 
9122 .024 0.012 .0032 .0006 
9123 .026 0.019 .0022 .0006 

Note: Italicised groups were simulated cheaters; proportions that exceed the nominal Type I error rate are bolded. This 
supplementary analysis used a more conservative alpha in Stage 1 (α1 = .01), groups that were not flagged in Stage 1 
were excluded for Stage 2 analysis. 

α1 = Stage 1 alpha 

α2 = Stage 2 alpha 

A Stage 2 false positive 

B Stage 2 false negative 

The consolidated results are summarised in Table 6, which shows the number of groups correctly or incorrectly 
detected. The precision (or positive prediction value) and specificity (or true negative rate) values are computed as 
follows:  

    
∑True positive

∑ Predicted positive
 

    
∑True negative

∑True negative ∑ False positive
 

Table 6: Group-level precision and specificity based on multiple Stage 1 and Stage 2 scenarios 

Number of groups α1 = .05 α1 = .01 
α2 = .01 α2 = .001 α2 = .0005 α2 = .001 α2 = .0005 α2 = .0001 α2 = .00005 

Predicted positives 16 15 15 12 10 12 10 
Predicted negatives 59 60 60 63 65 63 65 
True positives 16 15 15 11 10 11 10 
True negatives 57 57 57 56 57 56 57 
False positives 0 0 0 1 0 1 0 
False negatives 2 3 3 7 8 7 8 
Overall total 75 75 75 75 75 75 75 
Precision (PPV) 100.00% 100.00% 100.00% 91.67% 100.00% 91.67% 100.00% 
Specificity (TNR) 100.00% 100.00% 100.00% 98.25% 100.00% 98.25% 100.00% 

α1 = Stage 1 alpha      α2 = Stage 2 alpha 
PPV = positive predictive value   TNR = true negative rate 

In the context of detecting systematic cheating at group-level, the precision and specificity values show that this 
approach has a reasonably well-controlled precision at detecting groups, even with a relatively short test. Across all the 
replications, there has never been more than 1 falsely identified group out of 57 groups that are assumed to be 
innocent. We focused on and reported specificity rather than sensitivity (or true positive rate) because in this context, 
false accusations have more dire consequences than undetected cheating, which is discussed in more detail in the next 
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section. The results show that specificity also appears to be reasonably well-controlled, and relatively stable across the 
various scenarios. 

Discussion 

Before discussing the results, we need to keep in mind that cheating detection methods should come second in terms of 
priority to methods for deterring cheating. A quote by Wollack (2004) sums up this principle succinctly: 

Copying indices are a last resort—they can be used only after the test has been administered and the 
testing agency suspects that someone’s score is spurious. Having available statistical tools to detect 
suspected copying is important, but exam developers and administrators must continue to proactively 
address the copying problem by creating a testing environment that will, to as large an extent as large 
an extent as possible, discourage and prevent copying (p. 44).  

Keeping that overarching principle in mind, the simulation results provide some evidence that the two-stage approach 
is promising for detecting systematic cheating in a large-scale context. Given that the ω index is largely used for 
pairwise investigation of cheating, its applications in large scale contexts has considerable logistical limitations.  

The exploratory first stage allows for rough but very fast preliminary run through large datasets to flag groups that 
need to be examined in detail. The primary purpose of Stage 1 is data reduction – to reduce substantially the number of 
pairs to be examined in the next stage. As such, a more liberal statistical test sufficed for this purpose. 

The second stage then allows for a more detailed, but sample-based, statistical testing of random pairs within the 
suspected groups. Unusually high proportion of flagged pairs within the sampled group can be interpreted as evidence 
that systematic cheating may have occurred. However, the second stage should not be treated as an end of the process 
but rather as a stepping stone towards additional and more extensive rounds of investigation where other methods can 
be brought to bear. These supplementary methods can include school/class-level audit, having a random sample retake 
the test under close supervision, looking at performance over time using additional data, school-level trend analysis. 
These methods require more resources but they are feasible on a much smaller and more manageable number of cases 
(i.e., the suspected group).  

In addition, the augmentation process in estimating the thetas improve and mitigate the psychometric limitations 
(Sunbul & Yormaz, 2018; Zopluoglu & Davenport, 2012) inherent in contaminated data (because of the presence of 
cheaters). This augmentation process is especially useful in standardized test settings where other item formats are 
available. Our results have shown that even a small number (5 to 10) “uncontaminated” items can drastically improve 
the ability estimates, thereby also improving the performance of the detection process. What emerged from the insights 
on psychometric and logistic challenges is an approach that is both efficient and effective as confirmed by the results of 
the supplemental precision and specificity analysis. 

Limitations and Extensions to Future Research 

This study is limited by relying on simulated data on cheaters. Applying the method to actual data is recommended for 
further validation. In this particular simulation, the ω index appears to have lower statistical power compared to other 
simulations, but this could be due to considerably shorter test length. Only 16 out of the 18 simulated cheater groups 
have been detected in Stage 1 and further confirmed in Stage 2. Nevertheless, the empirical Type I error rates remain 
well-controlled even if the item parameters were contaminated by a substantial proportion of cheaters.  

Incidentally, our initial presumption that the comparison groups are non-cheaters has been supported by the evidence 
from our results – by Stage 2, the proportion of pairs which we reject the null hypothesis no longer exceeds our 
nominal alpha level when using fully augmented theta.  

Because of the serious consequence in even the allegation of cheating, we recommend against a purely statistical set of 
evidence to accuse schools of systematic cheating. Where integrity is at stake and stigma can be very difficult to 
remove, a false negative is far more preferable than a false positive. It is also worth noting that statistical analyses only 
provide evidence and never conclusive determination. As such, we recommend that these statistical procedures be 
used only for flagging groups. Even for flagging purposes, as a first step to a more comprehensive investigation, we 
recommend using corroborating evidence from multiple statistical evidence to reduce false positives as much as 
possible.  

It would be useful to apply this method on other large-scale data with different test lengths. This would show a clearer 
picture of achievable statistical power using this two-stage sample-based approach. It would be ideal if actual data with 
suspected systematic cheating can be obtained. Where systematic cheating was suspected to have occurred and other 
sources of evidence are available, statistical methods such as answer-copying indices would have a more robust 
benchmark for comparison.  

Exploring ways to further improve the estimation of both item and person parameters would also be useful. If a clean 
calibration subset of the data is available or can be identified, the item parameters can be estimated using only that 
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subset and thereby minimising the contamination due to aberrant responses. This is not always possible. Moreover, 
even with uncontaminated item parameters, theta estimation will remain contaminated.  

We have shown here that including additional items, especially those that are less susceptible to systematic cheating, 
can make the cheating detection process more effective. This augmentation can be improved further by utilising 
information from other domains (e.g., through multidimensional IRT models that incorporate items from other tests 
that were also taken by the student). Even if no additional test items are available, additional information outside of 
test responses can be utilised using imputation methods (Rubin, 1987) or conditioning models (Mislevy, 1991; Mislevy, 
Johnson, & Muraki, 1992) that take into account background variables to increase the reliability of the person 
estimates.  

Finally, digital testing environments allow for additional data to be captured to further augment cheating detection 
methods. For example, applications of statistical approaches can be combined with data analytics to utilise behavioural 
indicators such as response times. These techniques can broaden the repertoire of cheating detection methods as well 
as strengthen the current approaches.  
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