logo logo European Journal of Educational Research

EU-JER is a leading, peer-reviewed research journal that provides an online forum for studies in education by and for scholars and practitioners worldwide.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Eurasian Society of Educational Research
Headquarters
Christiaan Huygensstraat 44, Zipcode:7533XB, Enschede, THE NETHERLANDS
Research Article

Validity of Measurement and Causal Model of Online Scam Protection Behavior Among Risk Thai Students

Ungsinun Intarakamhang , Sudarat Tuntivivat , Kanchana Pattrawiwat , Pitchada Prasittichok , Nawasap Pichaisamart , Somsamer Thaksin , Pinyo Wongthong

This research investigated the validity of measurement and causal model of online scam protection behavior (OSPB) among at risk Thai students. The sam.


  • Pub. date: April 15, 2025
  • Online Pub. date: April 07, 2025
  • Pages: 661-675
  • 128 Downloads
  • 612 Views
  • 0 Citations

How to Cite

Abstract:

T

This research investigated the validity of measurement and causal model of online scam protection behavior (OSPB) among at risk Thai students. The sample comprised 286 high school students from three demonstration schools under the University. Data were analyzed using descriptive statistics, confirmatory factor analysis (CFA), and structural equation modeling (SEM). The factor loadings for all items satisfied the standard criteria with scores ranging from .40 to .80, item-total correlations ranging from .405 to .718, and Cronbach’s alpha coefficients ranging from .773 to .928. The modified model demonstrated a better fit with the empirical data (χ² = 47.62, df = 37, p = .113,  χ²/df = 1.287, RMSEA = .032, SRMR = .028, GFI = .97, CFI = 1.00, NFI = .99). All factors: a) awareness of online risks, b) inhibitory control, c) game-based learning, d) social support, and e) motivation to prevent online scams can predict 81% of OSPB. The motivation to prevent online scams strongly influenced OSPB, with an effect size of .60. Additionally, all factors can predict 88% of the motivation for online scam prevention, suggesting that Protection Motivation Theory (PMT) is a suitable framework for understanding and evaluating Thai students' preventive behaviors in online deception scenarios. This newly developed instrument is highly reliable and can be effectively used by researchers and educators to assess the risk of online fraud victimization among high school students.

Keywords: Causal model, confirmatory factor analysis, high school student, online scam protection behavior.

description PDF
file_save XML
Article Metrics
Views
128
Download
612
Citations
Crossref
0

Scopus
0

References

Alkhalil, Z., Hewage, C., Nawaf, L., & Khan, I. (2021). Phishing attacks: A recent comprehensive study and a new anatomy. Frontiers in Computer Science, 3, Article 563060. https://doi.org/10.3389/fcomp.2021.563060

Alqahtani, H., & Kavakli-Thorne, M. (2020). Does decision-making style predict individuals’ cybersecurity avoidance behavior? In A. Moallem (Eds.), HCI for cybersecurity, privacy and trust (pp. 32-50). Springer. https://doi.org/10.1007/978-3-030-50309-3_3

Alsehaima, A. O., & Alanazi, A. A. (2018). Psychological and social risks to children of using the internet: literature review. Journal of Child and Adolescent Behavior, 6(5), Article 380. https://doi.org/10.4172/2375-4494.1000380  

Ansari, M. F. (2022). A quantitative study of risk scores and the effectiveness of AI-based cybersecurity awareness training programs. International Journal of Smart Sensors and Adhoc Network, 3(3), Article 1.

Bekkers, L., Hoff-de Goede, S. V., Huurne, E. M., van Houten, Y., Spithoven, R., & Leukfeldt, E. R. (2023). Protecting your business against ransomware attacks? Explaining the motivations of entrepreneurs to take future protective measures against cybercrimes using an extended protection motivation theory model. Computers and Security, 127, Article 103099. https://doi.org/10.1016/j.cose.2023.103099

Bender, M. (2024). 15 online behaviors that make you vulnerable to scams. FindLaw Blog. https://shorturl.at/iee6q

Boerman, S. C., Kruikemeier, S., & Zuiderveen Borgesius, F. J. (2018). Exploring motivations for online privacy protection behavior: Insights from panel data. Communication Research,  48(7), 953-977. https://doi.org/10.1177/0093650218800915

Büchi, M., Just, N., & Latzer, M. (2017). Caring is not enough: the importance of Internet skills for online privacy protection. Information, Communication and Society, 20(8), 1261-1278. https://doi.org/10.1080/1369118X.2016.1229001

Byrd, K., Her, E. S., Fan, A., Liu, Y., & Leitch, S. (2022). Consumers’ threat and coping appraisals of in-restaurant dining during a pandemic–the moderating roles of conflicting information and trust-in-science and scientists. International Journal of Hospitality Management, 103, Article 103186. https://doi.org/10.1016/j.ijhm.2022.103186

Chin, K. (2025, January 2). 19 most common types of phishing attacks in 2025. Human Cyber Risk Blog. https://shorturl.at/Yzq9F

Cruz, B. (2024, October 31). Web of deception: how to prevent the latest online scams. Security.org Blog. https://shorturl.at/a4QvP

Dumitru, E. (2020). Testing children and adolescents’ ability to identify fake news: A combined design of quasi-experiment and group discussions. Societies, 10(3), Article 71. https://doi.org/10.3390/soc10030071

Ebel, R. L. (1972). Essentials of educational measurement. Prentice Hall.  

Finkelhor, D., Walsh, K., Jones, L., Mitchell, K., & Collier, A. (2020). Youth internet safety education: Aligning programs with the evidence base. Trauma, Violence, and Abuse, 22(5), 1233-1247. https://doi.org/10.1177/1524838020916257

Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39-50. https://doi.org/10.1177/002224378101800104

Gaston, A., & Prapavessis, H. (2014). Using a combined protection motivation theory and health action process approach intervention to promote exercise during pregnancy. Journal of Behavioral Medicine, 37, 173-184. https://doi.org/10.1007/s10865-012-9477-2

Global Anti Scam Alliance. (2022). The global state of scams report – 2022: How are countries worldwide fighting online scams? Global Anti Scam Alliance (GASA). https://bit.ly/4chOPwf

Global Anti Scam Alliance. (2024). International scammers steal over $1 trillion in 12 months in global state of scams report 2024. Global Anti Scam Alliance (GASA). https://shorturl.at/SeutR

González-Ponce, B. M., Carmona-Márquez, J., Pilatti, A., Díaz-Batanero, C., & Fernández-Calderón, F. (2024). The protection motivation theory is an explanatory model for the intention to use alcohol-protective behavioral strategies related to the manner of drinking among young adults. Alcohol and Alcoholism, 59(5), Article agae059. https://doi.org/10.1093/alcalc/agae059

Goodboy, A. K., & Kline, R. B. (2017). Statistical and practical concerns with published communication research featuring structural equation modeling. Communication Research Reports, 34(1), 68-77. https://doi.org/10.1080/08824096.2016.1214121

Hadlington, L. (2017). Human factors in cybersecurity: Examining the link between Internet addiction, impulsivity, attitudes towards cybersecurity, and risky cybersecurity behaviors. Heliyon, 3(7), Article e00346. https://doi.org/10.1016/j.heliyon.2017.e00346

Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall.

Hedayati, S., Damghanian, H., Farhadinejad, M., & Rastgar, A. A. (2023). Meta-analysis on application of protection motivation theory in preventive behaviors against COVID-19. International Journal of Disaster Risk Reduction, 94, Article 103758. https://doi.org/10.1016/j.ijdrr.2023.103758

Henriksen-Bulmer, J., Rosenorn-Lanng, E., Corbin-Clarke, S., Ware, S., Melacca, D., & Fenge, L.-A. (2024). Using game-based learning to teach young people about privacy and online safety. Interactive Learning Environments, 32(10), 6430-6450. https://doi.org/10.1080/10494820.2023.2265424

Jacobs, N. C. L., Völlink, T., Dehue, F., & Lechner, L. (2015). The development of a self-report questionnaire on coping with cyberbullying: The cyberbullying coping questionnaire. Societies, 5(2), 460-491. https://doi.org/10.3390/soc5020460

Jansen, J., & Leukfeldt, R. (2017). Coping with cybercrime victimization: An exploratory study into impact and change. Journal of Qualitative Criminal Justice and Criminology, 6(2), 205-228. https://shorturl.at/yyPpT

Jansen, J., & Van Schaik, P. (2018). Testing a model of precautionary online behaviour: The case of online banking. Computers in Human Behavior, 87, 371-383, https://doi.org/10.1016/j.chb.2018.05.010

Junyawattananon, N., & Tanrattanakul, A. (2024). การสร้างวัฒนธรรมไซเบอร์เชิงบวก สำหรับนักศึกษาระดับปริญญาตรี [Benefits of creating a positive cyber culture for undergraduate students]. Thai Media Fund Journal, 3(1), 80-105. https://shorturl.at/isQw0

Kalaharsha, P., & Mehtre, B. M. (2021). Detecting phishing sites - An overview. arXiv. https://doi.org/10.48550/arXiv.2103.12739

Khan, M. A., Merabet, A., Alkaabi, S., & El Sayed, H. (2022). Game-based learning platform to enhance cybersecurity education. Education and Information Technologies, 27, 5153-5177. https://doi.org/10.1007/s10639-021-10807-6

Kline, R. B. (2005). Principles and practice of structural equation modeling. Guilford Press.  

Kumar, P., Naik, S. M., Devkar, U. R., Chetty, M., Clegg, T. L., & Vitak, J. (2017). ‘No telling passcodes out because they're private’: Understanding children's mental models of privacy and security online. Proceedings of the ACM on Human-Computer Interaction, 1, Article 64. https://doi.org/10.1145/3134699

Leith, L. M. (2004). Motivation to diet and exercise. In C. D. Spielberger (Ed.), Encyclopedia of applied psychology (pp. 641-646). Elsevier. https://doi.org/10.1016/b0-12-657410-3/00837-0

Martens, M., De Wolf, R., & De Marez, L. (2019). Investigating and comparing the predictors of the intention towards taking security measures against malware, scams, and cybercrime in general. Computers in Human Behavior, 92, 139-150. https://doi.org/10.1016/j.chb.2018.11.002 

Meharchandani, D. (2020, December 7). Staggering phishing statistics in 2020. Security Boulevard. https://shorturl.at/MjKrp

Mennella, R., Bavard, S., Mentec, I., & Grèzes, J. (2022). Spontaneous instrumental avoidance learning in social contexts. Scientific Reports, 12, Article 17528. https://doi.org/10.1038/s41598-022-22334-6

Meulders, A., Franssen, M., & Claes, J. (2020). Avoiding based on shades of gray: Generalization of pain-related avoidance behavior to novel contexts. The Journal of Pain, 21(11), 1212-1223. https://doi.org/10.1016/j.jpain.2020.02.002

Mohd Zaharon, N. F., Mohd Ali, M., & Hasnan, S. (2021). Factors affecting awareness of phishing among Generation Y. Asia-Pacific Management Accounting Journal, 16(2), 409-444. https://doi.org/10.24191/APMAJ.V16i2-15

Mousavi, R., Chen, R., Kim, D. J., & Chen, K. (2020). Effectiveness of privacy assurance mechanisms in users' privacy protection on social networking sites from the perspective of protection motivation theory. Decision Support Systems, 135, Article 11323. https://doi.org/10.1016/j.dss.2020.113323

National Statistical Office. (2021). สถานการณ์เด็กและเยาวชน ปี 2564 [The situation of children and youth 2021]. Ministry of Digital Economy and Society. https://shorturl.at/csDDM

Nazneen, S., Xu, H., Ud Din, N., & Karim, R. (2022). Perceived COVID-19 impacts and travel avoidance: application of protection motivation theory. Tourism Review, 77(2), 471-483. https://doi.org/10.1108/TR-03-2021-0165

Noppakhuncharoencha, A. (2018). ปัจจัยที่กำหนดพฤติกรรมในการรับมือกับภัยคุกคามทางคอมพิวเตอร์ต่อการสูญเสียและถูกโจรกรรมข้อมูลทางการเงิน: กรณีศึกษาโปรแกรมทางการบัญชีสำหรับธุรกิจขนาดเล็ก [Factors that determine behavior in dealing with computer threats against loss and theft of financial information: Case studies of accounting programs for small business] [Master’s thesis, Thammasat University].  TU Digital Collections. https://doi.org/10.14457/TU.the.2018.431

Nunnally, J. C., & Bernstein, I. H. (1994). Psychometric theory (3rd ed.). McGraw-Hill.  

Okpokwasili, O. A., & Onwuatuegwu, I. N. (2023). Online predators: Protecting teenagers from internet sexual exploitation. International Journal of Modern Science and Research Technology, 1(4), 41-51. https://bit.ly/41Wa8jz

Organization for Economic Co-operation and Development. (2011). The protection of children online: Risks faced by children online and policies to protect them. OECD Digital Economy Papers. https://doi.org/10.1787/5kgcjf71pl28-en

Quayyum, F., Cruzes, D. S., & Jaccheri, L. (2021). Cybersecurity awareness for children: A systematic literature review. International Journal of Child-Computer Interaction30, Article 100343. https://doi.org/10.1016/j.ijcci.2021.100343

Rogers, R. W. (1975). A protection motivation theory of fear appeals and attitude change1. The Journal of Psychology, 91(1), 93-114. https://doi.org/10.1080/00223980.1975.9915803

Rogers, R. W., & Prentice-Dunn, S. (1997). Protection motivation theory. In D. S. Gochman (Ed.), Handbook of health behavior research I: Personal and social determinants (pp. 113-132). Plenum Press.

Rovinelli, R. J., & Hambleton, R. K. (1977). On the use of content specialists in the assessment of criterion-referenced test item validity. Tijdschrift Voor Onderwijs Research, 2(2), 49-60.  

Ryu, K., Jarumaneerat, T., Promsivapallop, P., & Kim, M. (2023). What influences restaurant dining out and diners’ self-protective intention during the COVID-19 pandemic: Applying the protection motivation theory. International Journal of Hospitality Management, 109, Article 103400. https://doi.org/10.1016/j.ijhm.2022.103400

Schaefer, C., Coyne, J. C., & Lazarus, R. S. (1981). The health-related functions of social support. Journal of Behavior Medicine, 4, 381-406. https://doi.org/10.1007/BF00846149  

Schumacker, R. E., & Lomax, R. G. (2010). A beginner's guide to structural equation modeling (3rd ed.). Routledge.   

Shahrani, S. B., Paizi@Fauzi, W. F., Zainudin, S., Othman, Z. A., Ariffin, K. A. Z., & Sahar, S. A. (2021). Descriptive analysis: The impact of online cyber awareness workshop on teenagers’ knowledge of cyber issues. Malaysian Journal of Information and Communication Technology, 6(2), 1-11. https://bit.ly/4iV50SY  

Sulaiman, N. S., Fauzi, M. A., Hussain, S., & Wider, W. (2022). Cybersecurity behavior among government employees: The role of protection motivation theory and responsibility in mitigating cyberattacks. Information13(9), Article 413. https://doi.org/10.3390/info13090413

Suwathanpornkul, I., Charoensuk, O., Sakuntanak, P., Tulmethakaan, M., & Sarnkhaowkhom, C. (2024). A causal model of learning loss in the midst of the COVID-19 pandemic among Thai lower secondary school students. European Journal of Educational Research, 13(3), 1155-1170. https://doi.org/10.12973/eu-jer.13.3.1155  

Tabachnick, B. G., & Fidell, L. S. (2001). Using multivariate statistics (4th ed.). Allyn and Bacon.

Tang, Z., Miller, A. S., Zhou, Z., & Warkentin, M. (2021). Does government social media promote users' information security behavior towards COVID-19 scams? Cultivation effects and protective motivations. Government Information Quarterly, 38(2), Article 101572. https://doi.org/10.1016/j.giq.2021.101572

Teimouri, M., Benrazavi, S. R., Griffiths, M. D., & Hassan, M. S. (2018). A model of online protection to reduce children’s online risk exposure: Empirical evidence from Asia. Sexuality and Culture, 22, 1205-1229.  https://doi.org/10.1007/s12119-018-9522-6

Ting, T. T., Cheah, K. M., Khiew, J. X., Lee, Y. C., Chaw, J. K., & Teoh, C. K. (2024). Validation of cyber security behavior among adolescents at Malaysia university: Revisiting gender as a role. International Journal of Innovative Research and Scientific Studies, 7(1), 127-137. https://doi.org/10.53894/ijirss.v7i1.2544

Tinubu, C. O., Falana, O. J., Oluwumi, E. O., Sodiya, A. S., & Rufai, S. A. (2023). PHISHGEM: mobile game-based learning for phishing awareness. Journal of Cyber Security Technology, 7(3), 134-153.  https://doi.org/10.1080/23742917.2023.2167276

Tsai, H.-Y. S., Jiang, M., Alhabash, S., LaRose, R., Rifon, N. J., & Cotten, S. R. (2016). Understanding online safety behaviors: A protection motivation theory perspective. Computers and Security, 59, 138-150. https://doi.org/10.1016/j.cose.2016.02.009

Tu, C.-H., Yen, C.-J., Sujo-Montes, L., & Roberts, G. A. (2015). Gaming personality and game dynamics in online discussion instructions. Educational Media International, 52(3), 155-172. https://doi.org/10.1080/09523987.2015.1075099

Velki, T., & Milić, M. (2021). Stress as a mediator between risk and protective factors and online risky behaviors in adolescents. Primenjena psihologija, 14(2), 149-171.  https://doi.org/10.19090/pp.2021.2.149-171

Verkijika, S. F. (2018). Factors influencing the adoption of mobile commerce applications in Cameroon. Telematics and Informatics, 35(6), 1665-1674. https://doi.org/10.1016/j.tele.2018.04.012

Xu, S., Shtulman, A., & Young, A. G. (2022). Can children detect fake news? Proceedings of the Annual Meeting of Cognitive Science Society, 44, 2988-2993. https://shorturl.at/mDvB8

...