Determining Factors Influencing Indonesian Higher Education Students' Intention to Adopt Artificial Intelligence Tools for Self-Directed Learning Management
Artificial intelligence (AI) has revolutionized higher education. The rapid adoption of artificial intelligence in education (AIED) tools has signific.
- Pub. date: July 15, 2025
- Online Pub. date: May 29, 2025
- Pages: 805-828
- 117 Downloads
- 585 Views
- 0 Citations
- #Artificial intelligence
- # artificial neural networks
- # educational management
- # intention
- # self-directed learning.
Abstract:
Artificial intelligence (AI) has revolutionized higher education. The rapid adoption of artificial intelligence in education (AIED) tools has significantly transformed educational management, specifically in self-directed learning (SDL). This study examines the factors influencing Indonesian higher education students' intention to adopt AIED tools for self-directed learning using a combination of the Theory of Planned Behavior (TPB) with additional theories. A total of 322 university students from diverse academic backgrounds participated in the structured survey. This study utilized machine learning it was Artificial Neural Networks (ANN) to analyze nine factors, including attitude (AT), subjective norms (SN), perceived behavioral control (PBC), optimism (OP), user innovativeness (UI), perceived usefulness (PUF), facilitating conditions (FC), perception towards ai (PTA), and intention (IT) with a total of 41 items in the questionnaire. The model demonstrated high predictive accuracy, with SN emerging as the most significant factor to IT, followed by AT, PBC, PUF, FC, OP, and PTA. User innovativeness was the least influential factor due to the lowest accuracy. This study provides actionable insights for educators, policymakers, and technology developers by highlighting the critical roles of social influence, supportive infrastructure, and student beliefs in shaping AIED adoption for self-directed learning (SDL). This research not only fills an important gap in the literature but also offers a roadmap for designing inclusive, student-centered AI learning environments that empower learners and support the future of SDL in digital education.
artificial intelligence artificial neural networks educational management intention self directed learning
Keywords: Artificial intelligence, artificial neural networks, educational management, intention, self-directed learning.
References
Aghaei, S., Shahbazi, Y., Pirbabaei, M., & Beyti, H. (2023). A hybrid SEM-neural network method for modeling the academic satisfaction factors of architecture students. Computers and Education: Artificial Intelligence, 4, Article 100122. https://doi.org/10.1016/j.caeai.2023.100122
Ahmad, S. F., Han, H., Alam, M. M., Rehmat, M. K., Irshad, M., Arraño-Muñoz, M., & Ariza-Montes, A. (2023). Impact of artificial intelligence on human loss in decision making, laziness and safety in education. Humanities and Social Sciences Communications, 10, Article 311. https://doi.org/10.1057/s41599-023-01787-8
Ajitha, S., Geevarathna, & Huxley, S. (2024). Exploring public perception, awareness, and satisfaction with AI applications in Karnataka, India: The role of individual characteristics and media influence. International Journal of System Assurance Engineering and Management. Advance online publication. https://doi.org/10.1007/s13198-024-02594-3
Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. In J. Kuhl, & J. Beckmann (Eds.), Action control from cognition behavior (pp. 11-39). Springer. https://doi.org/10.1007/978-3-642-69746-3_2
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211. https://doi.org/10.1016/0749-5978(91)90020-T
Ajzen, I. (2020). The theory of planned behavior: Frequently asked questions. Human Behavior and Emerging Technologies, 2, 314-324. https://doi.org/10.1002/hbe2.195
Akudjedu, T. N., Torre, S., Khine, R., Katsifarakis, D., Newman, D., & Malamateniou, C. (2023). Knowledge, perceptions, and expectations of Artificial Intelligence in radiography practice: A global radiography workforce survey. Journal of Medical Imaging and Radiation Sciences, 54(1), 104-116. https://doi.org/10.1016/j.jmir.2022.11.016
Algerafi, M. A. M., Zhou, Y., Alfadda, H., & Wijaya, T. T. (2023). Understanding the factors influencing higher education students' intention to adopt artificial intelligence-based robots. IEEE Access: Practical Innovations, Open Solutions, 11, 99752-99764. https://doi.org/10.1109/ACCESS.2023.3314499
Alhashmi, S. F. S., Salloum, S. A., & Abdallah, S. (2020). Critical success factors for implementing artificial intelligence (AI) projects in Dubai Government United Arab Emirates (UAE) health sector: Applying the extended technology acceptance model (TAM). Advances in Intelligent Systems and Computing, 1058, 393-405. https://doi.org/10.1007/978-3-030-31129-2_36
Aliferis, C., & Simon, G. (2024). Overfitting, underfitting, and general model overconfidence and under-performance: Pitfalls and best practices in machine learning and AI. In G. J. Simon, & C. Aliferis (Eds.), Artificial intelligence and machine learning in health care and medical sciences (pp. 477-524). Springer. https://doi.org/10.1007/978-3-031-39355-6_10
Almaiah, M. A., Alfaisal, R., Salloum, S. A., Hajjej, F., Shishakly, R., Lutfi, A., Alrawad, M., Al Mulhem, A., Alkhdour, T., & Al-Maroof, R. S. (2022). Measuring institutions’ adoption of artificial intelligence applications in online learning environments: Integrating the innovation diffusion theory with technology adoption rate. Electronics, 11(20), Article 3291. https://doi.org/10.3390/electronics11203291
Al Omari, O., Alshammari, M., Al Jabri, W., Al Yahyaei, A., Aljohani, K. A., Sanad, H. M., Al-Jubouri, M. B., Bashayreh, I., Fawaz, M., ALBashtawy, M., Alkhawaldeh, A., Qaddumi, J., Shalaby, S. A., Abdallah, H. M., AbuSharour, L., Al Qadire, M., & Aljezawi, M. (2024). Demographic factors, knowledge, attitude and perception and their association with nursing students’ intention to use artificial intelligence (AI): A multicentre survey across 10 Arab countries. BMC Medical Education, 24, Article 1456. https://doi.org/10.1186/s12909-024-06452-5
Althunibat, A. (2015). Determining the factors influencing students' intention to use m-learning in Jordan higher education. Computers in Human Behavior, 52, 65-71. https://doi.org/10.1016/j.chb.2015.05.046
An, X., Chai, C. S., Li, Y., Zhou, Y., Shen, X., Zheng, C., & Chen, M. (2023). Modeling English teachers’ behavioral intention to use artificial intelligence in middle schools. Education and Information Technologies, 28, 5187-5208. https://doi.org/10.1007/s10639-022-11286-z
Andrews, J. E., Ward, H., & Yoon, J. (2021). UTAUT as a model for understanding intention to adopt AI and related technologies among librarians. Journal of Academic Librarianship, 47(6), Article 102437. https://doi.org/10.1016/j.acalib.2021.102437
Anwar, H., Khan, A. U., Ullah, B., Taha, A. T. B., Najeh, T., Badshah, M. U., Ghanim, A. A. J., & Irfan, M. (2024). Intercomparison of deep learning models in predicting streamflow patterns: Insight from CMIP6. Scientific Reports, 14, Article 17468. https://doi.org/10.1038/s41598-024-63989-7
Assele, S. Y., Meulders, M., & Vandebroek, M. (2023). Sample size selection for discrete choice experiments using design features. Journal of Choice Modelling, 49, Article 100436. https://doi.org/10.1016/j.jocm.2023.100436
Badan Pusat Statistik [Central Bureau of Statistics]. (2023). Jumlah perguruan tinggi, dosen, dan mahasiswa (negeri dan swasta) di bawah Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi menurut provinsi [Number of universities, lecturers, and students (public and private) under the Ministry of Education, Culture, Research, and Technology by province]. https://bit.ly/studentsanduniversitiesinIndonesia
Bentler, P. M., & Chou, C.-P. (1987). Practical Issues in Structural Modeling. Sociological Methods and Research, 16(1), 78-117. https://doi.org/10.1177/0049124187016001004
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370. https://doi.org/10.2307/3250921
Bicknell, K., Brust, C., & Settles, B. (2024). How Duolingo's AI learns what you need to learn: The language-learning app tries to emulate a great human tutor. IEEE Spectrum, 60(3), 28-33. https://doi.org/10.1109/MSPEC.2023.10061631
Bit, D., Biswas, S., & Nag, M. (2024). The Impact of Artificial Intelligence in Educational System. International Journal of Scientific Research in Science and Technology, 11(4), 419-427. https://doi.org/10.32628/IJSRST2411424
Brauner, P., Hick, A., Philipsen, R., & Ziefle, M. (2023). What does the public think about artificial intelligence? -A criticality map to understand bias in the public perception of AI. Frontiers in Computer Science, 5, Article 1113903. https://doi.org/10.3389/fcomp.2023.1113903
Brownhill, S. (2021). Asking more key questions of self-reflection. Reflective Practice, 23(2), 279-290. https://doi.org/10.1080/14623943.2021.2013192
Buabbas, A. J., Miskin, B., Alnaqi, A. A., Ayed, A. K., Shehab, A. A., Syed-Abdul, S., & Uddin, M. (2023). Investigating students’ perceptions towards artificial intelligence in medical education. Healthcare, 11(9), Article 1298. https://doi.org/10.3390/healthcare11091298
Buchori, I., Sugiri, A., Maryono, M., Pramitasari, A., & Pamungkas, I. T. D. (2017). Theorizing spatial dynamics of metropolitan regions: A preliminary study in Java and Madura Islands, Indonesia. Sustainable Cities and Society, 35, 468-482. https://doi.org/10.1016/j.scs.2017.08.022
Bujang, M. A., & Adnan, T. H. (2016). Requirements for minimum sample size for sensitivity and specificity analysis. Journal of Clinical Diagnosis Research, 10(10), YE01-YE06. https://doi.org/10.7860/jcdr/2016/18129.8744
Buyle, R., Van Compernolle, M., Vlassenroot, E., Vanlishout, Z., Mechant, P., & Mannens, E. (2018). Technology readiness and acceptance model as a predictor for the use intention of data standards in smart cities. Media and Communication, 6(4), 127-139. https://doi.org/10.17645/mac.v6i4.1679
Cakir, S., & Sita, M. (2020). Evaluating the performance of ANN in predicting the concentrations of ambient air pollutants in Nicosia. Atmospheric Pollution Research, 11(12), 2327-2334. https://doi.org/10.1016/j.apr.2020.06.011
Castagno, S., & Khalifa, M. (2020). Perceptions of Artificial Intelligence among healthcare staff: A qualitative survey study. Frontiers in Artificial Intelligence, 3, Article 578983. https://doi.org/10.3389/frai.2020.578983
Chai, C. S., Wang, X., & Xu, C. (2020). An extended theory of planned behavior for the modelling of Chinese secondary school students' intention to learn artificial intelligence. Mathematics, 8(11), Article 2089. https://doi.org/10.3390/math8112089
Chang, A. (2012). UTAUT and UTAUT 2: A review and agenda for future research. Journal The Winners, 13(2), 106-114. https://doi.org/10.21512/tw.v13i2.656
Chatterjee, S., Rana, N. P., Dwivedi, Y. K., & Baabdullah, A. M. (2021). Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model. Technological Forecasting and Social Change, 170, Article 120880. https://doi.org/10.1016/j.techfore.2021.120880
Chau, P. Y. K. (1996). An empirical assessment of a modified technology acceptance model. Journal of Management Information Systems, 13(2), 185-204. https://doi.org/10.1080/07421222.1996.11518128
Chawla, A., & Joshi, H. (2019). Consumer attitude and intention to adopt mobile wallet in India: An empirical study. International Journal of Bank Marketing, 37(7), 1590-1618. https://doi.org/10.1108/IJBM-09-2018-0256
Chen, B., Zhu, X., & del Castillo, F. D. (2023). Integrating generative AI in knowledge building. Computers and Education: Artificial Intelligence, 5, Article 100184. https://doi.org/10.1016/j.caeai.2023.100184
Chen, J. V., Tran, A., & Nguyen, T. (2019). Understanding the discontinuance behavior of mobile shoppers as a consequence of technostress: An application of the stress-coping theory. Computers in Human Behavior, 95, 83-93. https://doi.org/10.1016/j.chb.2019.01.022
Chen, M.-F., & Lin, N.-P. (2018). Incorporation of health consciousness into the technology readiness and acceptance model to predict app download and usage intentions. Internet Research, 28(2), 351-373. https://doi.org/10.1108/IntR-03-2017-0099
Chiu, T. K. F. (2023). The impact of generative AI (GenAI) on practices, policies and research direction in education: A case of ChatGPT and Midjourney. Interactive Learning Environments, 32(10), 6187-6203. https://doi.org/10.1080/10494820.2023.2253861
Choe, J. Y., Kim, J. J., & Hwang, J. (2021). Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB. Journal of Travel & Tourism Marketing, 38(1), 16-30. https://doi.org/10.1080/10548408.2020.1862023
Choi, S., Jang, Y., & Kim, H. (2022). Influence of pedagogical beliefs and perceived trust on teachers' acceptance of educational artificial intelligence tools. International Journal of Human-Computer Interaction, 39(4), 910-922. https://doi.org/10.1080/10447318.2022.2049145
Chu, T.-H., & Chen, Y.-Y. (2016). With good we become good: Understanding e-learning adoption by theory of planned behavior and group influences. Computers and Education, 92-93, 37-52. https://doi.org/10.1016/j.compedu.2015.09.013
Ciftci, O., Choi, E.-K., & Berezina, K. (2020). Customer intention to use facial recognition technology at quick-service restaurants. E-Review of Tourism Research, 17(5), 753-763. https://ertr-ojs-tamu.tdl.org/ertr/article/view/558
Connor Desai, S., & Reimers, S. (2019). Comparing the use of open and closed questions for Web-based measures of the continued-influence effect. Behavior Research Methods, 51, 1426-1440. https://doi.org/10.3758/s13428-018-1066-z
Costa, E. B., Fonseca, B., Santana, M. A., de Araújo, F. F., & Rego, J. (2017). Evaluating the effectiveness of educational data mining techniques for early prediction of students' academic failure in introductory programming courses. Computers in Human Behavior, 73, 247-256. https://doi.org/10.1016/j.chb.2017.01.047
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results (Doctoral dissertation, Massachusetts Institute of Technology). DSpace@MIT. http://hdl.handle.net/1721.1/15192
dos Santos, P. M., & Cirillo, M. Â. (2021). Construction of the average variance extracted index for construct validation in structural equation models with adaptive regressions. Communications in Statistics - Simulation and Computation, 52(4), 1639-1650. https://doi.org/10.1080/03610918.2021.1888122
Duong, C. D., Nguyen, T. H., Ngo, T. V. N., Dao, V. T., Do, N. D., & Pham, T. V. (2024). Exploring higher education students' continuance usage intention of ChatGPT: Amalgamation of the information system success model and the stimulus-organism-response paradigm. International Journal of Information and Learning Technology, 41(5), 556-584. https://doi.org/10.1108/IJILT-01-2024-0006
Ebadi, S., & Raygan, A. (2023). Investigating the facilitating conditions, perceived ease of use and usefulness of mobile-assisted language learning. Smart Learning Environments, 10, Article 30. https://doi.org/10.1186/s40561-023-00250-0
Eckle, K., & Schmidt-Hieber, J. (2019). A comparison of deep networks with ReLU activation function and linear spline-type methods. Neural Networks, 110, 232-242. https://doi.org/10.1016/j.neunet.2018.11.005
Elfwing, S., Uchibe, E., & Doya, K. (2018). Sigmoid-weighted linear units for neural network function approximation in reinforcement learning. Neural Networks, 107, 3-11. https://doi.org/10.1016/j.neunet.2017.12.012
El-Sefy, M., Yosri, A., El-Dakhakhni, W., Nagasaski, S., & Wiebe, L. (2021). Artificial neural network for predicting nuclear power plant dynamic behaviors. Nuclear Engineering and Technology, 53(10), 3275-3285. https://doi.org/10.1016/j.net.2021.05.003
Faham, E., & Asghari, H. (2019). Determinants of behavioral intention to use E-textbooks: A study in Iran's agricultural sector. Computers and Electronics in Agriculture, 165, Article 104935. https://doi.org/10.1016/j.compag.2019.104935
Folkinshteyn, D., & Lennon, M. (2016). Braving Bitcoin: A technology acceptance model (TAM) analysis. Journal of Information Technology Case and Application Research, 18(4), 220-249. https://doi.org/10.1080/15228053.2016.1275242
Foroughi, B., Senali, M. G., Iranmanesh, M., Khanfar, A., Ghobakhloo, M., Annamalai, N., & Naghmeh-Abbaspour, B. (2023). Determinants of intention to use ChatGPT for educational purposes: Findings from PLS-SEM and fsQCA. International Journal of Human-Computer Interaction, 40(17), 4501-4520. https://doi.org/10.1080/10447318.2023.2226495
Fošner, A. (2024). University students' attitudes and perceptions towards AI tools: Implications for sustainable educational practices. Sustainability, 16(19), Article 8668. https://doi.org/10.3390/su16198668
Franco-Gonçalo, P., Leite, P., Alves-Pimenta, S., Colaço, B., Gonçalves, L., Filipe, V., McEvoy, F., Ferreira, M., & Ginja, M. (2024). Automated assessment of pelvic longitudinal rotation using computer vision in canine hip dysplasia screening. Veterinary Sciences, 11(12), Article 630. https://doi.org/10.3390/vetsci11120630
Gallo, C. (2015). Artificial neural networks: Tutorial. In Encyclopedia of information science and technology (3rd ed.). IGI Global. https://doi.org/10.4018/978-1-4666-5888-2.ch626
Gavrilov, A. D., Jordache, A., Vasdani, M., & Deng, J. (2018). Preventing model overfitting and underfitting in convolutional neural networks. International Journal of Software Science and Computational Intelligence, 10(4), 19-28. https://doi.org/10.4018/IJSSCI.2018100102
German, J. D., Ong, A. K. S., Perwira Redi, A. A. N., & Robas, K. P. E. (2022). Predicting factors affecting the intention to use a 3PL during the COVID-19 pandemic: A machine learning ensemble approach. Heliyon, 8(11), Article e11382. https://doi.org/10.1016/j.heliyon.2022.e11382
Ghalami, H., Mohamadifar, A., Sorooshian, A., & Jansen, J. D. (2020). Machine-learning algorithms for predicting land susceptibility to dust emissions: The case of the Jazmurian Basin, Iran. Atmospheric Pollution Research, 11(8), 1303-1315. https://doi.org/10.1016/j.apr.2020.05.009
Grnholdt, L., & Martensen, A. (2005). Analysing customer satisfaction data: A comparison of regression and artificial neural networks. International Journal of Market Research, 47(2), 121-130. https://doi.org/10.1177/147078530504700201
Gumasing, M. J. J., Ong, A. K. S., Sy, M. A. P. C., Prasetyo, Y. T., & Persada, S. F. (2023). A machine learning ensemble approach to predicting factors affecting the intention and usage behavior towards online groceries applications in the Philippines. Heliyon, 9(10), Article e20644. https://doi.org/10.1016/j.heliyon.2023.e20644
Guo, L., Burke, M. G., & Griggs, W. M. (2025). A new framework to predict and visualize technology acceptance: A case study of shared autonomous vehicles. Technological Forecasting and Social Change, 212, Article 123960. https://doi.org/10.1016/j.techfore.2024.123960
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report the results of PLS-SEM. European Business Review, 31(1), 2-24. https://doi.org/10.1108/EBR-11-2018-0203
Harsh, K., Bharath, N., & Kuldeep, S. (2016). An introduction to artificial neural network. International Journal of Advance Research and Innovative Ideas in Education, 1(5), 27-30. https://bit.ly/43AQBEX
Hassan, H. G., Nassar, M., & Abdien, M. K. (2024). The influence of optimism and innovativeness on customers' perceptions of technological readiness in five-star hotels. Pharos International Journal of Tourism and Hospitality, 3(1), 70-80. https://doi.org/10.21608/pijth.2024.265141.1010
Hegde, J., & Rokseth, B. (2020). Applications of machine learning methods for engineering risk assessment – A review. Safety Science, 122, Article 104492. https://doi.org/10.1016/j.ssci.2019.09.015
Helmiatin, Hidayat, A., & Kahar, M. R. (2024). Investigating the adoption of AI in higher education: A study of public universities in Indonesia. Cogent Education, 11(1), Article 2380175. https://doi.org/10.1080/2331186X.2024.2380175
Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/10.1016/j.jbi.2009.07.002
iFlyTek. (2024). 从“执红笔”到“点鼠标”,高考评卷背后的技术变革 [From holding the 'red pen' to holding the 'mouse': The technological revolution behind the college entrance examination marking]. https://edu.iflytek.com/solution/examination
Igbokwe, I. C. (2023). Application of artificial intelligence (AI) in educational management. International Journal of Scientific Research and Publications, 13(3), 300-306. http://dx.doi.org/10.29322/IJSRP.13.03.2023.p13536
Irfan, T., Gunawan, T. S., & Wanayumini, W. (2023). Comparison of SGD, RMSprop, and Adam optimization in animal classification using CNNs. International Conference on Information Science and Technology Innovation (ICoSTEC), 2(1), 45-51.
Izzaddin, A., Langousis, A., Totaro, V., Yaseen, M., & Iacobellis, V. (2024). A new diagram for performance evaluation of complex models. Stochastic Environmental Research and Risk Assessment, 38, 2261-2281. https://doi.org/10.1007/s00477-024-02678-3
Jang, H.-J., & Noh, G.-Y. (2017). Extended technology acceptance model of VR head-mounted display in early stage of diffusion. Journal of Digital Convergence, 15(5), 353-361. https://doi.org/10.14400/JDC.2017.15.5.353
Janjua, J. I., Zulfiqar, S., Khan, T. A., & Ramay, S. A. (2023). Activation function conundrums in the modern machine learning paradigm. In Proceedings of the 2023 International Conference on Computing Advancements (ICCA). IEEE. https://doi.org/10.1109/ICCA59364.2023.10401760
Janpla, S., & Piriyasurawong, P. (2020). The development of an intelligent multilevel item bank model for the national evaluation of undergraduates. Universal Journal of Educational Research, 8(9), 4163-4172. https://doi.org/10.13189/ujer.2020.080942
Jiao, J., & Cao, X. (2024). Research on designers' behavioral intention toward Artificial Intelligence-Aided Design: Integrating the Theory of Planned Behavior and the Technology Acceptance Model. Frontiers in Psychology, 15, Article 1450717. https://doi.org/10.3389/fpsyg.2024.1450717
Jo, H., & Baek, E.-M. (2023). Retracted Article: Customization, loneliness, and optimism: drivers of intelligent personal assistant continuance intention during COVID-19. Humanities and Social Sciences Communications, 10, Article 529. https://doi.org/10.1057/s41599-023-02021-1
Kamalov, F., Calonge, D. S., & Gurrib, I. (2023). New era of artificial intelligence in education: Towards a sustainable multifaceted revolution. Sustainability, 15(16), Article 12451. https://doi.org/10.3390/su151612451
Kampa, R. K. (2023). Combining technology readiness and acceptance model for investigating the acceptance of m-learning in higher education in India. Asian Association of Open Universities Journal, 18(2), 105-120. https://doi.org/10.1108/AAOUJ-10-2022-0149
Kasneci, E., Sessler, K., Küchemann, S., Bannert, M., Dementieva, D., Fischer, F., Gasser, U., Groh, G., Günnemann, S., Hüllermeier, E., Krusche, S., Kutyniok, G., Michaeli, T., Nerdel, C., Pfeffer, J., Poquet, O., Sailer, M., Schmidt, A., Seidel, T., … Kasneci, G. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, Article 102274. https://doi.org/10.1016/j.lindif.2023.102274
Kays, K. M., Keith, T. L., & Broughal, M. T. (2013). Best practice in online survey research with sensitive topics. In N. Sappleton (Ed.), Advancing research methods with new technologies (pp. 157-168). IGI Global. https://www.igi-global.com/gateway/chapter/75944
Kim, N. J., & Kim, M. K. (2022). Teacher's perceptions of using an artificial intelligence-based educational tool for scientific writing. Frontiers in Education, 7, Article 755914. https://doi.org/10.3389/feduc.2022.755914
Kim, T., & Chiu, W. (2019). Consumer acceptance of sports wearable technology: The role of technology readiness. International Journal of Sports Marketing and Sponsorship, 20(1), 109-126. https://doi.org/10.1108/IJSMS-06-2017-0050
Kuhail, M. A., Alturki, N., Alramlawi, S., & Alhejori, K. (2023). Interacting with educational chatbots: A systematic review. Education and Information Technologies, 28, 973-1018. https://doi.org/10.1007/s10639-022-11177-3
Lederer, J. (2021). Activation functions in artificial neural networks: A systematic overview. ArXiv. https://doi.org/10.48550/arXiv.2101.09957
Leh, J. (2022, July 13). AI in LMS: 10 must-see innovations for learning professionals. Talented Learning. https://talentedlearning.com/ai-in-lms-innovations-learning-professionals-must-see/
Li, X., Jiang, M. Y.-C., Jong, M. S.-Y., Zhang, X., & Chai, C.-S. (2022). Understanding medical students' perceptions of and behavioral intentions toward learning artificial intelligence: A survey study. International Journal of Environmental Research and Public Health, 19(14), Article 8733. https://doi.org/10.3390/ijerph19148733
Liljander, V., Gillberg, F., Gummerus, J., & van Riel, A. (2006). Technology readiness and the evaluation and adoption of self-service technologies. Journal of Retailing and Consumer Services, 13(3), 177-191. https://doi.org/10.1016/j.jretconser.2005.08.004
Lin, M.-L., & Yu, T.-K. (2018). Patent applying or not applying: What factors motivating students' intention to engage in patent activities. Eurasia Journal of Mathematics, Science and Technology Education, 14(5), 1843-1858. https://doi.org/10.29333/ejmste/85420
Liu, Y.-L. E., & Huang, Y.-M. (2024). Exploring the perceptions and continuance intention of AI-based text-to-image technology in supporting design ideation. International Journal of Human–Computer Interaction, 41(1), 694-706. https://doi.org/10.1080/10447318.2024.2311975
Loeng, S. (2020). Self-directed learning: A core concept in adult education. Education Research International, 2020(1), Article 3816132. https://doi.org/10.1155/2020/3816132
Lugito, N. P. H., Cucunawangsih, C., Suryadinata, N., Kurniawan, A., Wijayanto, R., Sungono, V., Sabran, M. Z., Albert, N., Budianto, C. J., Rubismo, K. Y., Purushotama, N. B. S. A., & Zebua, A. (2024). Readiness, knowledge, and perception towards artificial intelligence of medical students at Faculty of Medicine, Pelita Harapan University, Indonesia: A cross-sectional study. BMC Medical Education, 24, Article 1044. https://doi.org/10.1186/s12909-024-06058-x
Madar, N. K., Teeni-Harari, T., Icekson, T., & Sela, Y. (2019). Optimism and entrepreneurial intentions among students: The mediating role of emotional intelligence. Journal of Entrepreneurship Education, 22(4). https://bit.ly/3FfXCCW
Mahendra, M. W., Nurkamilah, N., & Sari, C. P. (2023). Artificial-intelligence powered app as learning aid in improving learning autonomy: Students' perspective. Journal of English Education and Society, 8(1), 122-129. https://bit.ly/4kqXLlS
Mailizar, M., Burg, D., & Maulina, S. (2021). Examining university students' behavioural intention to use e-learning during the COVID-19 pandemic: An extended TAM model. Education and Information Technologies, 26, 7057-7077. https://doi.org/10.1007/s10639-021-10557-5
Manning, T., Sleator, R. D., & Walsh, P. (2014). Biologically inspired intelligent decision making: A commentary on the use of artificial neural networks in bioinformatics. Bioengineered, 5(2), 80-95. https://doi.org/10.4161/bioe.26997
Masyitoh, S. L., Ma'ruf, K., & Setiawan, R. J. (2024). Local binary pattern and principal component analysis for low-light face recognition. IEEE 11th International Conference on Electrical Engineering, Computer Science and Informatics (EECSI) (pp. 211-216). IEEE. https://doi.org/10.1109/EECSI63442.2024.10776119
Maurya, R., Aggarwal, D., Gopalakrishnan, T., & Pandey, N. N. (2023). Enhancing deep neural network convergence and performance: A hybrid activation function approach by combining ReLU and ELU activation function. In Proceedings of the 2023 International Conference on Intelligent Control and Instrumentation (ICI) (pp. 1-5). IEEE. https://doi.org/10.1109/ICI60088.2023.10421353
McNeeley, S. (2012). Sensitive issues in surveys: Reducing refusals while increasing reliability and quality of responses to sensitive survey items. In L. Gideon (Ed.), Handbook of survey methodology for the social sciences (pp. 377-396). Springer. https://doi.org/10.1007/978-1-4614-3876-2_22
Melián-González, S., Gutiérrez-Taño, D., & Bulchand-Gidumal, J. (2019). Predicting the intentions to use chatbots for travel and tourism. Current Issues in Tourism, 24(2), 192-210. https://doi.org/10.1080/13683500.2019.1706457
Mengi, A., Singh, R. P., Mengi, N., Kalgotra, S., & Singh, A. (2024). A questionnaire study regarding knowledge, attitude and usage of artificial intelligence and machine learning by the orthodontic fraternity of Northern India. Journal of Oral Biology and Craniofacial Research, 14(5), 500-506. https://doi.org/10.1016/j.jobcr.2024.06.004
Michel-Villarreal, R., Vilalta-Perdomo, E., Salinas-Navarro, D. E., Thierry-Aguilera, R., & Gerardou, F. S. (2023). Challenges and opportunities of generative AI for higher education as explained by ChatGPT. Education Sciences, 13(9), Article 856. https://doi.org/10.3390/educsci13090856
Mohr, S., & Kühl, R. (2021). Acceptance of artificial intelligence in German agriculture: An application of the technology acceptance model and the theory of planned behavior. Precision Agriculture, 22, 1816-1844. https://doi.org/10.1007/s11119-021-09814-x
Niazkar, H. R., & Niazkar, M. (2020). Application of artificial neural networks to predict the COVID-19 outbreak. Global Health Research and Policy, 5, Article 50. https://doi.org/10.1186/s41256-020-00175-y
Nicolaou, A. I., & Masoner, M. M. (2013). Sample size requirements in structural equation models under standard conditions. International Journal of Accounting Information Systems, 14(4), 256-274. https://doi.org/10.1016/j.accinf.2013.11.001
Nie, J., Zheng, C., Zeng, P., Zhou, B., Lei, L., & Wang, P. (2020). Using the theory of planned behavior and the role of social image to understand mobile English learning check-in behavior. Computers and Education, 156, Article 103942. https://doi.org/10.1016/j.compedu.2020.103942
Njock, P. G. A., Shen, S.-L., Zhou, A., & Modoni, G. (2021). Artificial neural network optimized by differential evolution for predicting diameters of jet grouted columns. Journal of Rock Mechanics and Geotechnical Engineering, 13(6), 1500-1512. https://doi.org/10.1016/j.jrmge.2021.05.009
Nurmaini, S. (2021). The Artificial Intelligence Readiness for Pandemic Outbreak COVID-19: Case of Limitations and Challenges in Indonesia. Computer Engineering and Applications, 10(1), 9-21. https://bit.ly/3HgcEcw
Obaid, T., & Aldammagh, Z. (2021). Predicting mobile banking adoption: An integration of TAM and TPB with trust and perceived risk. SSRN Electronic Journal, 17, 35-46. https://doi.org/10.2139/ssrn.3761669
Ocaña-Fernández, Y., Valenzuela-Fernández, L. A., & Garro-Aburto, L. L. (2019). Inteligencia artificial y sus implicaciones en la educación superior. Propósitos y Representaciones, 7(2), 536-568. http://dx.doi.org/10.20511/pyr2019.v7n2.274
Okumus, F., Ali, A., Bilgihan, A., & Ozturk, A. B. (2018). Psychological factors influencing customers’ acceptance of smartphone diet apps when ordering food at restaurants. International Journal of Hospitality Management, 72, 67-77. https://doi.org/10.1016/j.ijhm.2018.01.001
Oliveira, T., Thomas, M., & Espadanal, M. (2014). Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information and Management, 51(5), 497-510. https://doi.org/10.1016/j.im.2014.03.006
Ozkan, S., & Kanat, I. E. (2011). E-government adoption model based on theory of planned behavior: Empirical validation. Government Information Quarterly, 28, 503-513. https://doi.org/10.1016/j.giq.2010.10.007
Parasuraman, A. (2000). Technology readiness index (TRI): A multiple-item scale to measure readiness to embrace new technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
Park, E. S., & Park, M. S. (2020). Factors of the Technology Acceptance Model for Construction IT. Applied Sciences, 10(22), Article 8299. https://doi.org/10.3390/app10228299
Polyportis, A. (2023). A longitudinal study on artificial intelligence adoption: Understanding the drivers of ChatGPT usage behavior change in higher education. Frontiers in Artificial Intelligence, 6, Article 1324398. https://doi.org/10.3389/frai.2023.1324398
Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions. ArXiv. https://doi.org/10.48550/arXiv.1710.05941
Rodriguez-Ascaso, A., Boticario, J. G., Finat, C., & Petrie, H. (2017). Setting accessibility preferences about learning objects within adaptive elearning systems: User experience and organizational aspects. Expert Systems, 34(4), Article e12187. https://doi.org/10.1111/exsy.12187
Ruiz-Rojas, L. I., Acosta-Vargas, P., De-Moreta-Llovet, J., & Gonzalez-Rodriguez, M. (2023). Empowering education with generative artificial intelligence tools: Approach with an instructional design matrix. Sustainability, 15(15), Article 11524. https://doi.org/10.3390/su151511524
Sain, Z. H., Sain, S. H., & Serban, R. (2024). Implementing artificial intelligence in educational management systems: a comprehensive study of opportunities and challenges. Asian Journal of Managerial Science, 13(1), 23–31. https://doi.org/10.70112/ajms-2024.13.1.4235
Shanbehzadeh, M., Nopour, R., & Kazemi-Arpanahi, H. (2022). Design of an artificial neural network to predict mortality among COVID-19 patients. Informatics in Medicine Unlocked, 31, Article 100983. https://doi.org/10.1016/j.imu.2022.100983
Shatravin, V., Shashev, D., & Shidlovskiy, S. (2022). Sigmoid activation implementation for neural networks hardware accelerators based on reconfigurable computing environments for low-power intelligent systems. Applied Sciences, 12(10), Article 5216. https://doi.org/10.3390/app12105216
Shatravin, V., Shashev, D., & Shidlovskiy, S. (2023). Implementation of the SoftMax activation for reconfigurable neural network hardware accelerators. Applied Sciences, 13(23), Article 12784. https://doi.org/10.3390/app132312784
Shuhaiber, A. (2016). How facilitating conditions impact students' intention to use virtual lectures? An empirical evidence. AICT 2016: The Twelfth Advanced International Conference on Telecommunications (pp. 68-75). https://bit.ly/shuhaiber2016ann
Singh, S., & Sagar, R. (2021). A critical look at online survey or questionnaire-based research studies during COVID-19. Asian Journal of Psychiatry, 65, Article 102850. https://doi.org/10.1016/j.ajp.2021.102850
Sohaib, O., Hussain, W., Asif, M., Ahmad, M., & Mazzara, M. (2020). A PLS-SEM neural network approach for understanding cryptocurrency adoption. IEEE Access, 8, 13138-13150. https://doi.org/10.1109/ACCESS.2019.2960083
Sohn, K., & Kwon, O. (2020). Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics and Informatics, 47, Article 101324. https://doi.org/10.1016/j.tele.2019.101324
Song, J., Kim, J., & Cho, K. (2018). Understanding users' continuance intentions to use smart-connected sports products. Sport Management Review, 21(5), 477-490. https://doi.org/10.1016/j.smr.2017.10.004
Song, Y., & Wang, S. (2024). A survey and research on the use of artificial intelligence by Chinese design-college students. Buildings, 14(9), Article 2957. https://doi.org/10.3390/buildings14092957
Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students' acceptance and use of technology. Interactive Learning Environments, 32(9), 5142-5155. https://doi.org/10.1080/10494820.2023.2209881
Suh, W., & Ahn, S. (2022). Development and validation of a scale measuring student attitudes toward artificial intelligence. SAGE Open, 12(2), 1-12. https://doi.org/10.1177/21582440221100463
Sun, Y., Lyu, Y., Lin, P.-H., & Lin, R. (2022). Comparison of cognitive differences of artworks between artist and artistic style transfer. Applied Sciences, 12(11), Article 5525. https://doi.org/10.3390/app12115525
Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48, 1273-1296. https://doi.org/10.1007/s11165-016-9602-2
Tai, M. C.-T. (2020). The impact of artificial intelligence on human society and bioethics. Tzu Chi Medical Journal, 32(4), 339-343. https://doi.org/10.4103/tcmj.tcmj_71_20
Valle, N. N., Kilat, R. V., Lim, J., General, E., Dela Cruz, J., Colina, S. J., Batican, I., & Valle, L. (2024). Modeling learners' behavioral intention toward using artificial intelligence in education. Social Sciences and Humanities Open, 10, Article 101167. https://doi.org/10.1016/j.ssaho.2024.101167
Velli, K., & Zafiropoulos, K. (2024). Factors that affect the acceptance of educational ai tools by Greek teachers-a structural equation modelling study. European Journal of Investigation in Health, Psychology and Education, 14(9), 2560-2579. https://doi.org/10.3390/ejihpe14090169
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 169-332. https://doi.org/10.1287/mnsc.46.2.186.11926
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
Wang, C., Wang, H., Li, Y., Dai, J., Gu, X., & Yu, T. (2024). Factors influencing university students’ behavioral intention to use generative artificial intelligence: Integrating the theory of planned behavior and AI literacy. International Journal of Human–Computer Interaction. Advance online publication. https://doi.org/10.1080/10447318.2024.2383033
Wang, S., Wang, F., Zhu, Z., Wang, J., Tran, T., & Du, Z. (2024). Artificial intelligence in education: A systematic literature review. Expert Systems with Applications, 252(Part A), Article 124167. https://doi.org/10.1016/j.eswa.2024.124167
Weng, X., Xia, Q., Gu, M., Rajaram, K., & Chiu, T. K. F. (2024). Assessment and learning outcomes for generative AI in higher education: A scoping review on current research status and trends. Australasian Journal of Educational Technology, 40(6), 37-55. https://doi.org/10.14742/ajet.9540
Wollny, S., Schneider, J., Di Mitri, D., Weidlich, J., Rittberger, M., & Drachsler, H. (2021). Are we there yet? A systematic literature review. Frontiers in Artificial Intelligence, 4, Article 654924. https://doi.org/10.3389/frai.2021.654924
Xian, X. (2021). Psychological factors in consumer acceptance of artificial intelligence in leisure economy: A structural equation model. Journal of Internet Technology, 22(3), 697-705. https://jit.ndhu.edu.tw/article/view/2526
Yang, L. (2024). Theoretical analysis of Adam optimizer in the presence of gradient skewness. International Journal of Applied Science, 7(2), 27-42. https://doi.org/10.30560/ijas.v7n2p27
Yen, H. R. (2005). An attribute-based model of quality satisfaction for internet self-service technology. Service Industries Journal, 25(5), 641-659. https://doi.org/10.1080/02642060500100833
Yildirim, Y., Camci, F., & Aygar, E. (2023). Advancing self-directed learning through artificial intelligence. In M. J. Rodrigues, & I. T. Rodrigues (Eds.), Advancing self-directed learning in higher education (pp. 146-157). IGI Global. https://doi.org/10.4018/978-1-6684-6772-5.ch009
Yousefzadeh, M., Hosseini, S. A., & Farnaghi, M. (2021). Spatiotemporally explicit earthquake prediction using deep neural network. Soil Dynamics and Earthquake Engineering, 144, Article 106663. https://doi.org/10.1016/j.soildyn.2021.106663
Yuan, Z., Liu, J., Deng, X., Ding, T., & Wijaya, T. T. (2023). Facilitating conditions as the biggest factor influencing elementary school teachers' usage behavior of dynamic mathematics software in China. Mathematics, 11(6), Article 1536. https://doi.org/10.3390/math11061536
Yusriadi, Y., Rusnaedi, R., Siregar, N. A., Megawati, S., & Sakkir, G. (2023). Implementation of artificial intelligence in Indonesia. International Journal of Data and Network Science, 7, 283-294. https://doi.org/10.5267/j.ijdns.2022.10.005
Zabukovšek, S. S., Kalinic, Z., Bobek, S., & Tominc, P. (2018). SEM–ANN based research of factors’ impact on extended use of ERP systems. Central European Journal of Operations Research, 27, 703-735. https://doi.org/10.1007/s10100-018-0592-1
Zheng, Y., Zhang, Q., Chow, S. S. M., Peng, Y., Tan, S., Li, L., & Yin, S. (2023). Secure softmax/sigmoid for machine-learning computation. In ACSAC '23: Proceedings of the 39th Annual Computer Security Applications Conference (pp. 463-476). ACM. https://doi.org/10.1145/3627106.3627175
Zhong, S., Zhang, K., Bagheri, M., Burken, J. G., Gu, A., Li, B., Ma, X., Marrone, B. L., Ren, Z. J., Schrier, J., Shi, W., Tan, H., Wang, T., Wang, X., Yu, X., Zhu, J.-J., & Zhang, H. (2021). Machine learning: New ideas and tools in environmental science and engineering. Environmental Science and Technology, 55(19), 12741-12754. https://doi.org/10.1021/acs.est.1c01339
Zhou, J., & Zhang, H. (2024). Factors influencing university students' continuance intentions towards self-directed learning using artificial intelligence tools: insights from structural equation modeling and fuzzy-set qualitative comparative analysis. Applied Sciences, 14(18), Article 8363. https://doi.org/10.3390/app14188363