'innovative teaching methods' Search Results
The Impact of Gamification-Assisted Instruction on the Acquisition of Scientific Concepts and Attitudes Towards Science Class Among Elementary School Students
attitude toward science classes elementary students gamification scientific concept...
This study addresses global concerns surrounding elementary students' science performance following the COVID-19, as a result of international tests such as Trends in International Mathematics and Science Study (TIMSS) highlight the ongoing challenges that urge the exploration of innovative educational approaches to improve science learning. This research employed gamification-assisted instruction and explored its impact on enhancing the understanding of science concepts and attitudes toward science class among fourth graders. The study adopted a quasi-experimental design and included an experimental group (ExG) that was taught using a gamification strategy and a control group (CoG) that was taught using a traditional method with a sample of 38 female elementary students from a public school in Jordan. Data were gathered using valid and reliable tools: the developed scientific concepts test and the Attitude Towards Science class measures. The ANCOVA analysis revealed that gamification significantly improves the acquisition of scientific concepts (η2=.208) and boosts a positive attitude toward science classes among elementary students (η2=.626). These findings encourage decision-makers to incorporate gamification into science teaching practices and methods.
Integrating Artificial Intelligence Into English Language Teaching: A Systematic Review
artificial intelligence english language teaching systematic review...
This research aims to systematically review the integration of artificial intelligence (AI) in English language teaching and learning. It specifically seeks to analyze the current literature to identify how AI could be utilized in English language classrooms, the specific tools and pedagogical approaches employed, and the challenges faced by educators. Using the PRISMA-guided Systematic Literature Review (SLR) methodology, articles were selected from Scopus, Science Direct, and ERIC, and then analyzed thematically with NVivo software. Findings reveal that AI enhances English teaching through tools like grammar checkers, chatbots, and language learning apps, with writing assistance being the most common application (54.55% of studies). Despite its benefits, challenges such as academic dishonesty, over-reliance on AI (27.27% of studies), linguistic issues, and technical problems remain significant. The study emphasizes the need for ethical considerations and teacher training to maximize AI’s potential. It also highlights societal concerns, including the digital divide, underscoring the importance of equitable access to AI-powered education for learners of all socioeconomic backgrounds.
Effect of STEAM Project-Based Learning on Engineering Students’ 21st Century Skills
steam steam education steam project-based learning 21st century skills...
STEM/STEAM education is an interdisciplinary pedagogical approach that cultivates skills in science (S), technology (T), engineering (E), arts (A), and mathematics (M) while also fostering 21st century skills like teamwork, problem-solving, critical thinking, and creativity in learners. Enhancing STEAM and 21st century skills for engineering students facilitates their swift adaptation to STEM/STEAM employment demands in the 4.0 industrial revolution and the ongoing digital transformation in Vietnam. This study aims to investigate the effect of STEAM project-based learning on the 21st century skills of 47 mechanical engineering technology students at a public university in Vietnam. The findings of a one-group pretest-posttest design and an analysis of engineering student groups’ STEAM project-based learning products revealed that there was a significant improvement in students' 21st century skills at a 95% confidence level. Among the three 21st century skills studied, engineering students’ collaboration skill showed a moderate effect size, while problem-solving and creative thinking skills demonstrated a large effect size after implementing STEAM project-based learning in the “Workplace Skills” course. Some significant limitations were identified, including (a) the lack of a comparison group, which may have influenced the difference between the pretest and posttest; and (b) the sustainability of 21st century skills developed through STEAM project-based learning in the “Workplace Skills” course was not investigated. Therefore, studying the effect of other factors on engineering students’ 21st century skills and exploring their sustainability were main recommendations for further research.
Synergy of Voluntary GenAI Adoption in Flexible Learning Environments: Exploring Facets of Student-Teacher Interaction Through Structural Equation Modeling
flexible learning environments generative artificial intelligence adoption structural equation modeling student-teacher interaction technology acceptance...
Integrating generative artificial intelligence (GenAI) in education has gained significant attention, particularly in flexible learning environments (FLE). This study investigates how students’ voluntary adoption of GenAI influences their perceived usefulness (PU), perceived ease of use (PEU), learning engagement (LE), and student-teacher interaction (STI). This study employed a structural equation modeling (SEM) approach, using data from 480 students across multiple academic levels. The findings confirm that voluntary GenAI adoption significantly enhances PU and PEU, reinforcing established technology acceptance models (TAM). However, PU did not directly impact LE at the latent level—an unexpected finding that underscores students’ engagement’s complex and multidimensional nature in AI-enriched settings. Conversely, PEU positively influenced LE, which in turn significantly predicted STI. These findings suggest that usability, rather than perceived utility alone, drives deeper engagement and interaction in autonomous learning contexts. This research advances existing knowledge of GenAI adoption by proposing a structural model that integrates voluntary use, learner engagement, and teacher presence. Future research should incorporate variables such as digital literacy, self-regulation, and trust and apply longitudinal approaches to better understand the evolving role of GenAI inequitable, human-centered education.