logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
7321 Parkway Drive South, Hanover, MD 21076, USA
Eurasian Society of Educational Research
Headquarters
7321 Parkway Drive South, Hanover, MD 21076, USA
self efficacy belief science education teacher education construct validity self rated content knowledge

Arguments for Construct Validity of the Self-Efficacy Beliefs of Interdisciplinary Science Teaching (SElf-ST) Instrument

Kevin Handtke , Susanne Bögeholz

Current research on self-efficacy beliefs of interdisciplinary science teaching indicates shortcomings in facing recent teaching challenges in seconda.

C

Current research on self-efficacy beliefs of interdisciplinary science teaching indicates shortcomings in facing recent teaching challenges in secondary education and corresponding valid instruments. Thus, we designed the Self-Efficacy Beliefs of Interdisciplinary Science Teaching (SElf-ST) instrument based on a pedagogical content knowledge model for science teaching. We ensured the factorial validity of ten factors. To bring construct validity down to a round figure, we examined convergent and divergent validity in this paper. For answering the overall research question regarding arguments for the convergent and divergent validity of the interpretation of the SElf-ST instrument’s test values (and related hypotheses), we analyzed data of pre-service, trainee, and in-service biology, chemistry, and physics teachers (n = 590) in a cross-sectional study. While the strong latent correlations of the ten SElf-ST factors with self-efficacy beliefs of interdisciplinary science teaching in primary education (r = 0.40 – 0.63, p < 0.01) indicate convergent validity, the rather weak correlations with self-efficacy beliefs of general teaching (r = 0.17 – 0.54, p < 0.01), self-rated content knowledge in science (r = 0.13 – 0.40, p < 0.01), and perceived stress (r = -0.13 – -0.19, p < 0.01) support different divergent validity intensities. Thus, assumed relations within the nomological net surrounding the self-efficacy beliefs of interdisciplinary science teaching construct were confirmed for secondary education. In sum, we shed light on a rarely explored aspect of construct validity in science education research regarding self-efficacy beliefs. Doing so, we gained strong arguments that the SElf-ST instrument’s test values can serve as indicators of self-efficacy beliefs of interdisciplinary science teaching in secondary education.

Keywords: Self-efficacy belief, science education, teacher education, construct validity, self-rated content knowledge.

cloud_download PDF
Cite
Article Metrics
Views
536
Download
668
Citations
Crossref
7

Scopus
5

References

Appleton, K., & Kindt, I. (2002). Beginning elementary teachers’ development as teachers of science. Journal of Science Teacher Education, 13(1), 43–61. https://doi.org/10.1023/A:1015181809961

Bandura, A. (1995). Exercise of personal and collective efficacy in changing societies. In A. Bandura (Ed.), Self-Efficacy in Changing Societies (pp. 1–45). Cambridge University Press.

Bandura, A. (1997). Self-Efficacy: The exercise of control. W. H. Freeman and Company.

Bandura, A. (2006). Guide for constructing self-efficacy scales. In F. Pajares, & T. Urdan (Eds.), Self-Efficacy Beliefs of Adolescents (pp. 307–337). Information Age Publishing.

Barros, M. A., Laburú, C. E., & da Silva, F. R. (2010). An instrument for measuring self-efficacy beliefs of secondary school physics teachers. Procedia Social and Behavioral Sciences, 2(2), 3129–3133. https://doi.org/10.1016/j.sbspro.2010.03.476

Baumert, J., & Kunter, M. (2013). The COACTIV model of teachers’ professional competence. In M. Kunter, J. Baumert, W. Blum, U. Klusmann, S. Krauss, & M. Neubrand (Eds.), Cognitive Activation in the Mathematics Classroom and Professional Competence of Teachers: Results from the COACTIV Project (pp. 25–48). Springer.

Bröll, L., & Friedrich, J. (2012). Zur Qualifikation der Lehrkraefte fur den NWA-Unterricht – eine Bestandsaufnahme in Baden-Wuerttemberg [About teachers’ qualification to teach interdisciplinary science – An inventory in Baden-Wuerttemberg]. STEM Journal/ MNU Journal, 65(3), 180–186.

Brown, T. A. (2006). Confirmatory factor analysis for applied research. The Guilford Press.

Bühner, M. (2011). Einfuehrung in die Test- und Fragebogenkonstruktion [Introduction into designing tests and questionnaires]. Pearson Studium.

Büssing, A. (2011). German perceived stress scale - Translation. https://www.cmu.edu/dietrich/psychology/stress-immunity-disease-lab/scales/.doc/german_pss_10.doc

Carlson, J., & Daehler, K. R. (2019). The refined consensus model of pedagogical content knowledge in science education. In A. Hume, R. Cooper, & A. Borowski (Eds.), Repositioning Pedagogical Content Knowledge in Teachers’ Knowledge for Teaching Science (pp. 77–92). Springer Singapore.

Cohen, S., & Williamson, G. M. (1988). Perceived stress in a probability sample of the United States. In S. Spacapan, & S. Oskamp (Eds.), The Social Psychology of Health: The Claremont Symposium on Applied Social Psychology (pp. 31–67). Sage Publications.

Cronbach, L. J., & Meehl, P. E. (1955). Construct validity in psychological tests. Psychological Bulletin, 52(4), 281–302.

de Laat, J., & Watters, J. J. (1995). Science teaching self-efficacy in a primary school: A case study. Research in Science Education, 25(4), 453–464. https://doi.org/10.1007/BF02357387

Deehan, J. (2017). The science teaching efficacy belief instruments (STEBI A and B): A comprehensive review of methods and findings from 25 years of science education research. Springer International Publishing.

DeVellis, R. F. (1991). Scale development: Theory and applications. Sage Publications.

Dörges, A. (2001). Erfahrungen mit dem integrierten naturwissenschaftlichen Unterricht [Experiences with interdisciplinary science teaching]. STEM Journal/ MNU Journal, 54(4), 230–232.

Enochs, L. G., & Riggs, I. M. (1990, April 8–11). Further development of an elementary science teaching efficacy belief instrument: A preservice elementary scale [Paper presentation]. 63rd meeting of the National Association of Research in Science Teaching, Atlanta, GA, United States.

Flora, D. B., LaBrish, C., & Chalmers, R. P. (2012). Old and new ideas for data screening and assumption testing for exploratory and confirmatory factor analysis. Frontiers in Psychology, 3, 55. https://doi.org/10.3389/fpsyg.2012.00055

Forsthuber, B., Horvath, A., de Almeida Coutinho, A. S., Motiejūnaitė, A., & Baïdak, N. (2011). Science education in Europe: National policies, practices and research. Education, Audiovisual and Culture Executive Agency. https://doi.org/10.2797/7170

Handtke, K., & Bögeholz, S. (2019a). Self-efficacy beliefs of interdisciplinary science teaching (SElf-ST) instrument: Drafting a theory-based measurement. Education Sciences, 9(4), 247. https://doi.org/10.3390/educsci9040247

Handtke, K., & Bögeholz, S. (2019b, September 9–12). Selbstwirksamkeitserwartungen zum Unterrichten von Naturwissenschaften: Messinstrumententwicklung und Einflussfaktoren [Self-efficacy beliefs of interdisciplinary science teaching: Measurement development and influencing factors] [Presentation]. 22nd International Conference of the Association of the Didactics of Chemistry and Physics, and the Professional Division of the Didactics of Biology, Vienna, Austria.

Handtke, K., & Bögeholz, S. (2020). Self-rated content knowledge of biology, chemistry, and physics – Developing a measure and identifying challenges for interdisciplinary science teaching. Research in Subject-matter Teaching and Learning, 3, 46–67. https://doi.org/10.23770/rt1832

Hartig, J., Frey, A., & Jude, N. (2012). Validitaet [Validity]. In H. Moosbrugger, & A. Kelava (Eds.), Testtheorie und Fragebogenkonstruktion [Test theory and the design of questionnaires] (pp. 143–171). Springer.

Jöreskog, K. G. (2004). Structural equation modeling with ordinal variables using LISREL. https://www.researchgate.net/publication/254206917_Structural_Equation_Modeling_with_Ordinal_Variables_using_LISREL

Käpylä, M., Heikkinen, J.‐P., & Asunta, T. (2009). Influence of content knowledge on pedagogical content knowledge: The case of teaching photosynthesis and plant growth. International Journal of Science Education, 31(10), 1395–1415. https://doi.org/10.1080/09500690802082168

Kline, R. B. (2011). Principles and practice of structural equation modeling. The Guilford Press.

Kultusministerkonferenz (Ed.). (2004). Bildungsstandards im Fach Biologie fuer den Mittleren Schulabschluss: Beschluss vom 16.12.2004 [National educational standards for biology teaching regarding the intermediate school-leaving qualification: Resolution from 16th December 2004]. https://www.kmk.org/ fileadmin/Dateien/veroeffentlichungen_beschluesse/2004/2004_12_16-Bildungsstandards-Biologie.pdf

Leonhart, R. (2013). Lehrbuch Statistik: Einstieg und Vertiefung [Textbook statistics: Entry and deepening]. Hans Huber.

Little, T. D. (2013). Longitudinal structural equation modeling. The Guilford Press.

Lumpe, A., Czerniak, C., Haney, J., & Beltyukova, S. (2012). Beliefs about teaching science: The relationship between elementary teachers’ participation in professional development and student achievement. International Journal of Science Education, 34(2), 153–166. https://doi.org/10.1080/09500693.2010.551222

Mavrikaki, E., & Athanasiou, K. (2011). Development and application of an instrument to measure Greek primary education teachers’ biology teaching self-efficacy beliefs. Eurasia Journal of Mathematics, Science & Technology Education, 7(3), 203–213. https://doi.org/10.12973/ejmste/75197

Meinhardt, C., Rabe, T., & Krey, O. (2018). Formulierung eines evidenzbasierten Validitaetsarguments am Beispiel der Erfassung physikdidaktischer Selbstwirksamkeitserwartungen mit einem neu entwickelten Instrument [Establishing an evidence-based validity argument for assessing self-efficacy beliefs for teaching physics with a newly developed instrument]. German Journal of Science Education/ Zeitschrift fuer Didaktik der Naturwissenschaften, 24(1), 131–150. https://doi.org/10.1007/s40573-018-0079-6

Moosbrugger, H., & Kelava, A. (2012). Qualitaetsanforderungen an einen psychologischen Test (Testguetekriterien) [Quality requirements on a psychological test (Criteria of test quality)]. In H. Moosbrugger, & A. Kelava (Eds.), Testtheorie und Fragebogenkonstruktion [Test theory and the design of questionnaires] (pp. 7–26). Springer.

Neumann, K., Härtig, H., Harms, U., & Parchmann, I. (2017). Science teacher preparation in Germany. In J. E. Pedersen, T. Isozaki, & T. Hirano (Eds.), Model Science Teacher Preparation Programs: An International Comparison of What Works (pp. 29–52). Information Age Publishing Inc.

Ngui, G. K., & Lay, Y. F. (2020). The effect of emotional intelligence, self-efficacy, subjective well-being and resilience on student teachers’ perceived practicum stress: A Malaysian case study. European Journal of Educational Research, 9(1), 277–291. https://doi.org/10.12973/eu-jer.9.1.277

Niedersächsisches Kultusministerium (Ed.). (2020). Kerncurriculum fuer die integrierte Gesamtschule Schuljahrgaenge 5-10: Naturwissenschaften [Core curriculum of comprehensive school’s school years 5-10: Interdisciplinary science]. https://cuvo.nibis.de/cuvo.php?p=download&upload=234

Niedersächsisches Kultusministerium (Ed.). (2015). Kerncurriculum fuer das Gymnasium Schuljahrgaenge 5-10: Naturwissenschaften [Core curriculum of grammar school’s school years 5-10: Interdisciplinary science]. https://cuvo.nibis.de/cuvo.php?p=download&upload=18

Palmer, D., Dixon, J., & Archer, J. (2015). Changes in science teaching self-efficacy among primary teacher education students. Australian Journal of Teacher Education, 40(12), 27–40. https://doi.org/10.14221/ajte.2015v40n12.3

Park, S., & Chen, Y.-C. (2012). Mapping out the integration of the components of pedagogical content knowledge (PCK): Examples from high school biology classrooms. Journal of Research in Science Teaching, 49(7), 922–941. https://doi.org/10.1002/tea.21022

Park, S., & Oliver, J. S. (2008). Revisiting the conceptualisation of pedagogical content knowledge (PCK): PCK as a conceptual tool to understand teachers as professionals. Research in Science Education, 38(3), 261–284. https://doi.org/10.1007/s11165-007-9049-6

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y., & Podsakoff, N. P. (2003). Common method biases in behavioral research: A critical review of the literature and recommended remedies. The Journal of Applied Psychology, 88(5), 879–903. https://doi.org/10.1037/0021-9010.88.5.879

Pruski, L. A., Blanco, S. L., Riggs, R. A., Grimes, K. K., Fordtran, C. W., Barbola, G. M., Cornell, J. E., & Lichtenstein, M. J. (2013). Construct validation of the self-efficacy teaching and knowledge instrument for science teachers-revised (SETAKIST-R): Lessons Learned. Journal of Science Teacher Education, 24(7), 1133–1156. https://doi.org/10.1007/s10972-013-9351-2

Rabe, T., Meinhardt, C., & Krey, O. (2012). Entwicklung eines Instruments zur Erhebung von Selbstwirksamkeitserwartungen in physikdidaktischen Handlungsfeldern [Teachers’ self efficacy beliefs for teaching physics: Development of a new instrument]. German Journal of Science Education/ Zeitschrift fuer Didaktik der Naturwissenschaften, 18, 293–315.

Ramey-Gassert, L., Shroyer, M. G., & Staver, J. R. (1996). A qualitative study of factors influencing science teaching self-efficacy of elementary level teachers. Science Education, 80(3), 283–315. https://doi.org/10.1002/(SICI)1098-237X(199606)80:3%3C283::AID-SCE2%3E3.0.CO;2-A

Riese, J. (2009). Professionelles Wissen und professionelle Handlungskompetenz von (angehenden) Physiklehrkraeften [(Prospective) physics teachers’ professional knowledge and professional competence]. Logos.

Riggs, I. M., & Enochs, L. G. (1990). Toward the development of an elementary teacher’s science teaching efficacy belief instrument. Science Education, 74(6), 625–637. https://doi.org/10.1002/sce.3730740605

Ritter, J. M. (1999). The development and validation of the self-efficacy beliefs about equitable science teaching and learning instrument for prospective elementary teachers [Doctoral dissertation, Pennsylvania State University]. https://etda.libraries.psu.edu/files/final_submissions/2881

Roberts, J. K., & Henson, R. K. (2000, November 17–19). Self-Efficacy Teaching and Knowledge Instrument for Science Teachers (SETAKIST): A Proposal for a New Efficacy Instrument [Paper presentation]. 28th Meeting of the Mid-South Educational Research Association, Bowling Green, KY, United States.

Rosseel, Y., Jorgensen, T. D., Rockwood, N., Oberski, D., Byrnes, J., Vanbrabant, L., Savalei, V., Merkle, E., Hallquist, M., Rhemtulla, M., Katsikatsou, M., Barendse, M., & Scharf, F. (2020). Package ‘lavaan’. https://cran.r-project.org/web/packages/lavaan/lavaan.pdf

Saputro, A. D., Atun, S., Wilujeng, I., Ariyanto, A., & Arifin, S. (2020). Enhancing pre-service elementary teachers’ self-efficacy and critical thinking using problem-based learning. European Journal of Educational Research, 9(2), 765–773. https://doi.org/10.12973/eu-jer.9.2.765

Savran, A., & Cakiroglu, J. (2001). Preservice biology teachers’ perceived efficacy beliefs in teaching biology. Hacettepe University Journal of Education/ Hacettepe Universitesi Egitim Fakultesi Dergisi, 21, 105–112.

Schmitz, G. S. (1999). Zur Struktur und Dynamik der Selbstwirksamkeitserwartungen von Lehrern: Ein protektiver Faktor gegen Belastung und Burnout? [Structure and dynamics of teacher self-efficacy: A protective factor against strain and burnout?] [Doctoral dissertation, Free University of Berlin]. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000000315

Schoon, K. J., & Boone, W. J. (1998). Self-Efficacy and alternative conceptions of science of preservice elementary teachers. Science Education, 82(5), 553–568. https://doi.org/10.1002/(SICI)1098-237X(199809)82:5<553::AID-SCE2>3.0.CO;2-8

Schulte, K., Watermann, R., & Bögeholz, S. (2011). Ueberpruefung der faktoriellen Validitaet einer multidimensionalen Skala der Lehrer-Selbstwirksamkeitserwartung [Examination of the factorial validity of a multidimensional scale of self-efficacy beliefs of general teaching]. Empirical Pedagogy/ Empirische Paedagogik, 25(2), 232–256.

Schwarzer, R., & Hallum, S. (2008). Perceived teacher self-efficacy as a predictor of job stress and burnout: Mediation analyses. Applied Psychology, 57, 152–171. https://doi.org/10.1111/j.1464-0597.2008.00359.x

Schwarzer, R., & Jerusalem, M. (2002). Das Konzept der Selbstwirksamkeit [The concept of self-efficacy]. Journal of Pedagogy/ Zeitschrift fuer Paedagogik, 44. Supplement/ Beiheft: Selbstwirksamkeit und Motivationsprozesse in Bildungsinstitutionen [Self-efficacy and motivation processes in educational institutions], 28–53.

Shulman, L. S. (2015). PCK: Its genesis and exodus. In A. Berry, P. Friedrichsen, & J. Loughran (Eds.), Teaching and learning in science series. Re-examining pedagogical content knowledge in science education (pp. 3–13). Routledge.

Tschannen-Moran, M., Woolfolk Hoy, A., & Hoy, W. K. (1998). Teacher efficacy: Its meaning and measure. Review of Educational Research, 68(2), 202–248. https://doi.org/10.3102/00346543068002202

Velthuis, C., Fisser, P., & Pieters, J. (2014). Teacher training and pre-service primary teachers’ self-efficacy for science teaching. Journal of Science Teacher Education, 25(4), 445–464. https://doi.org/10.1007/s10972-013-9363-y

Vidwans, M. (2016). Exploring science teachers’ self-efficacy perceptions to teach in Ontario’s diverse classrooms: A mixed-methods investigation [Doctoral dissertation, University of Western Ontario]. https://ir.lib.uwo.ca/cgi/viewcontent.cgi?article=5460&context=etd

Walan, S., & Chang Rundgren, S.-N. (2014). Investigating preschool and primary school teachers’ self-efficacy and needs in teaching science: A pilot study. CEPS Journal, 4(1), 51–67.

Wheaton, B., Muthen, B., Alwin, D. F., & Summers, G. F. (1977). Assessing reliability and stability in panel models. Sociological Methodology, 8, 84–136. https://doi.org/10.2307/270754

Yangin, S., & Sidekli, S. (2016). Self-efficacy for science teaching scale development: Construct validation with elementary school teachers. Journal of Education and Training Studies, 4(10), 54–69. https://doi.org/10.11114/jets.v4i10.1694

Yilmaz-Tuzun, O. (2008). Preservice elementary teachers’ beliefs about science teaching. Journal of Science Teacher Education, 19(2), 183–204. https://doi.org/10.1007/s10972-007-9084-1

...