logo logo European Journal of Educational Research

EU-JER is is a, peer reviewed, online academic research journal.

Subscribe to

Receive Email Alerts

for special events, calls for papers, and professional development opportunities.

Subscribe

Publisher (HQ)

Eurasian Society of Educational Research
Eurasian Society of Educational Research
7321 Parkway Drive South, Hanover, MD 21076, USA
Eurasian Society of Educational Research
Headquarters
7321 Parkway Drive South, Hanover, MD 21076, USA
area and perimeter digital resources geometry learning mathematics visualisation

The Role of Visual Representations in Geometry Learning

Amalija Žakelj , Andreja Klančar

Visual representations and the process of visualisation have an important role in geometry learning. The optimal use of visual representations in comp.

V

Visual representations and the process of visualisation have an important role in geometry learning. The optimal use of visual representations in complex multimedia environments has been an important research topic since the end of the last century. For the purpose of the study presented in this paper, we designed a model of learning geometry with the use of digital learning resources like dynamic geometry programmes and applets, which foster visualisation. Students explore geometric concepts through the manipulation of interactive virtual representations. This study aims to explore whether learning of geometry with digital resources is reflected in higher student achievements in solving geometric problems. This study also aims to explore the role of graphical representations (GRs) in solving geometric problems. The results of the survey show a positive impact of the model of teaching on student achievement. In the post-test, students in the experimental group (EG) performed significantly better than students in the control group (CG) in the overall number of points, in solving tasks without GR, in calculating the area and the perimeter of triangles and quadrilaterals than the CG students, in all cases with small size effect. The authors therefore argue for the use of digital technologies and resources in geometry learning, because interactive manipulatives support the transition between representations at the concrete, pictorial and symbolic (abstract) levels and are therefore important for understanding mathematical concepts, as well as for exploring relationships, making precise graphical representations (GRs), formulating and proving assumptions, and applying different problem-solving strategies.

Keywords: Area and perimeter, digital resources, geometry, learning mathematics, visualisation.

cloud_download PDF
Cite
Article Metrics
Views
2010
Download
847
Citations
Crossref
6

Scopus
6

References

Adelabu, F. M., Makgato, M., & Ramaligela, M. S. (2019). Enhancing learners’ geometric thinking using dynamic geometry computer software. Journal of Technical Education and Training, 11(1), 44–53. https://bit.ly/3OzR2XH

Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33, 131–152. https://doi.org/10.1016/S0360-1315(99)00029-9 

Antolin Drešar, D., & Lipovec, U. (2015). Shematske vizualne reprezentacije potence [Schematic visual representations of exponents]. Revija za Elementarno Izobraževanje, 8(4), 143–158. https://bit.ly/3vb8mKZ  

Arcavi, A. (2003). The role of visual representations in the learning of mathematics. Educational Studies in Mathematics, 52(3), 215-241. https://doi.org/10.1023/A:1024312321077

Arzarello, F., Olivero, F., Paola, D., & Robutti, O. (2002). A cognitive analysis of dragging practises in Cabri environments. ZDM – The International Journal of Mathematics Education, 34(3), 66–72. https://doi.org/10.1007/BF02655708 

Atanasova-Pachemska, T., Gunova, V., Koceva Lazarova, L., & Pachemska, S. (2016). Visualization of the geometry problems in primary math education: Needs and changes. Istraživanje Matematičkog Obrazovanja, 8(15), 33–37. https://bit.ly/3rR3BnQ  

Bishop, A. (1989). Review of research in visualization in mathematics education. Focus on Learning Problems in Mathematics, 11(1–2), 716.

Borwein, J. M., & Bailey, D. H. (2003). Mathematics by experiment: Plausible reasoning in the 21st century. AK Peters.

Bray, A., & Tangney, B. (2017). Technology usage in mathematics education research: A systematic review of recent trends. Computers & Education, 114, 255–273. https://doi.org/10.1016/j.compedu.2017.07.004 

Bruner, J. (1966). Toward a theory of instruction. The Belknap press of Harvard University press.

Cencič, M., Cotič, M., & Medved-Udovič, V. (2010). Spremembe pouka in kompetence učiteljev za uporabo informacijsko-komunikacijske tehnologije [Changes to teaching and teacher competences for the application of ICT]. Pedagoška Obzorja, 25(2), 19–34.

Clark-Wilson, A., Robutti, O., & Thomas, M. (2020). Teaching with digital technology. ZDM Mathematics Education52(7), 1223–1242. https://doi.org/10.1007/s11858-020-01196-0

Clements, D. H., Sarama, J., Yelland, N. J., & Glass, B. (2008). Learning and teaching geometry with computers in the elementary and middle school. In M. K. Heid, & G. W. Blume (Eds.), Research on technology and the teaching and learning of mathematics: Volume 1, research syntheses (pp. 109–154). Information Age Publishing, Inc.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Taylor and Francis.

Cuban, L., Kirkpatrick, H., & Peck, C. (2001). High access and low use of technologies in high school classrooms: Explaining an apparent paradox. American Educational Research Journal, 38(4), 813–834. https://doi.org/10.3102/00028312038004813

de Jong, T., Linn, M. C., & Zacharia, Z. C. (2013). Physical and virtual laboratories in science and engineering education. Science, 340(6130), 305–308. https://doi.org/10.1126/science.1230579   

Duval, R. (2002). The cognitive analysis of problems of comprehension in the learning of mathematics. Mediterranean Journal for Research in Mathematics Education, 1(2), 1–16. https://doi.org/10.1007/s10649-006-0400-z

Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: Current use, calculations, and interpretation. Journal of Experimental Psychology, 141(1), 2–18. https://doi.org/10.1037/a0024338

Fuys, D., Geddes, D., & Tischler, R. (1988). The Van Hiele model of thinking in geometry among adolescents. Journal for Research in Mathematics Education. Monograph, 3, i-196. https://doi.org/10.2307/749957

Gerlič, I., & Jaušovec, N. (1998). Spoznavni procesi prisotni pri multimedijsko posredovanem gradivu [Cognitive processes present in the multimedia delivery of materials]. Sodobna Pedagogika, 49(2), 197–206.

Güler, G., & Çiltaş, A. (2011). The visual representation usage levels of mathematics teachers and students in solving verbal problems. International Journal of Humanities and Social Science, 1(11), 145–154. https://bit.ly/3vPoZey

Hartas, D. (2010). Educational research and inquiry, qualitative and quantitative approaches. Continuum International Publishing Group. https://doi.org/10.5040/9781474243834

Hassidov, D. (2017). The link between teaching methods and achievement in math in computer-assisted elementary schools. Creative Education, 8(14), 2293-2311. https://doi.org/10.4236/ce.2017.814157

Hegarty, M., & Kozhevnikov, M. (1999). Types of visual-spatial representations and mathematical problem solving. Journal of Educational Psychology, 91(4), 648–689. https://doi.org/10.1037/0022-0663.91.4.684 

Hershkowitz, R. (1989). Visualization in geometry – two sides of the coin. Focus on Learning Problems in Mathematics, 11(1), 61–76.

Hillmayr, D., Ziernwald, L., Reinhold, F., Hofer, S. I., & Reiss, K. M. (2020). The potential of digital tools to enhance mathematics and science learning in secondary schools: A context-specific meta-analysis. Computers & Education, 153, 103897. https://doi.org/10.1016/j.compedu.2020.103897 

Hoffmann, D. (1998). Visual Intelligence: How we create what we see. W. W. Norton.

Jancheski, M. (2011). The importance of animations and simulations in the process of e‑learning. In A. Madevska-Bogdanova, V. Dimitrova, & D. Spasov (Eds.), Proceedings of the Eighth Conference on Informatics and Information Technology (CIIT 2011) (pp.177-181). Springer.

Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183–203. http://doi.org/10.1002/tea.20152

Klančar, A., Cotič, M., & Žakelj, A. (2019). Učenje in poučevanje geometrije z uporabo informacijsko-komunikacijske tehnologije v osnovni šoli [Learning and teaching geometry using ICT in elementary school]. Založba Univerze na Primorskem. https://doi.org/10.26493/978-961-7055-63-4 

Kmetič, S. (2008). Vloga računalniške tehnologije pri pouku matematike [The role of ICT in teaching mathematics]. Vzgoja in Izobraževanje, 39(5), 52–58.

Kmetič, S., Miholič, T., & Zobec, V. (2014). Do višine trikotnika po več poteh [Arriving at the height of a triangle in diverse ways]. In S. Kmetič, J. Bone, S. Rajh, A. Sambolić Beganović, M. Sirnik, & M. Suban. (Eds.), Mednarodna Konferenca o učenju in poučevanju matematike KUPM 2014 [2nd International Conference on Learning and Teaching Mathematics KUPM 2014] (pp. 303–325). Zavod Republike Slovenije za šolstvo. https://bit.ly/3vbvVn0  

Kokol-Voljč, V. (2006). Razvoj osnovnih matematičnih pojmov z uporabo programov za dinamično geometrijo – dinamična ponazoritev [Development of basic mathematical concepts using dynamic geometry programs - dynamic illustration]. Pedagoška Obzorja, 21(1), 34–47.

Kosslyn, S. (1996). Image and brain: The resolution of the imagery debate. The MIT Press.

Lameras, P., & Moumoutzis, N. (2015). Towards the gamification of inquiry-based flipped teaching of mathematics a conceptual analysis and framework. In Proceedings of 2015 International Conference on Interactive Mobile Communication Technologies and Learning (IMCL) (pp. 343-347). IEEE. https://doi.org/10.1109/IMCTL.2015.7359616  

Lee, H., & Hollebrands, K. (2008). Preparing to teach mathematics with technology: An integrated approach to developing technological pedagogical content knowledge. Contemporary Issues in Technology and Teacher Education, 8(4), 326–341. https://bit.ly/3kerrFK  

Lipovec, A., & Podgoršek, M. (2016). Risba kot orodje za vpogled v matematično razumevanje [Drawing as a tool for insight into mathematical understanding]. Psihološka Obzorja, 25, 156–166. https://doi.org/10.20419/2016.25.452

Mešinović, S., Cotič, M., & Žakelj, A. (2017). Učenje in poučevanje osnovnih geometrijskih pojmov [Learning and teaching basic geometric concepts]. Pedagoška obzorja: časopis za didaktiko in metodiko, 32(2), 49–66.

Mullis, I. V. S. (Ed.). (2012). TIMSS 2011 international results in mathematics. TIMSS & PIRLS International Study Center.

Oates, G. (2011). Sustaining integrated technology in undergraduate mathematics. International Journal of Mathematical Education in Science and Technology, 42(6), 709–721. https://doi.org/10.1080/0020739x.2011.575238 

Ollesch, J., Grünig, F., Dörfler, T., & Heidelberg, M. (2017). Teaching mathematics with multimedia-based representations-what about teachers’ competencies? In T. Dooley & G. Gueudet (Eds.), Tenth Congress of the European society for Research in Mathematics Education (CERME10) (pp. 3976-3983). DCU Institute of Education and ERME. https://bit.ly/3EUc1Ag 

Organisation for Economic Co-operation and Development. (2014). PISA 2012 results in focus: What 15-year-olds know and what they can do with what they know. https://bit.ly/36KOUeD   

Presmeg, N. C. (2014). Contemplating visualization as an epistemological learning tool in mathematics. ZDM – The International Journal on Mathematics Education, 46(1), 151–157. https://doi.org/10.1007/s11858-013-0561-z

Pustavrh, S. (2014). Od zelene table do tabličnih računalnikov. In S. Kmetič, J. Bone, S. Rajh, A. Sambolić Beganović, M. Sirnik & M. Suban (Eds.), 2. mednarodna Konferenca o učenju in poučevanju matematike KUPM 2014 [2nd International Conference on Learning and Teaching Mathematics KUPM 2014] (pp. 230–238). Zavod Republike Slovenije za šolstvo. https://bit.ly/3ELNmO1  

Raphael, D., & Wahlstrom, M. (1989). The influence of instructional aids on mathematics achievement. Journal for Research in Mathematics Education, 20(2), 173–190. https://doi.org/10.2307/749281

Rau, M. A. (2017). How do students learn to see concepts in visualizations? Social learning mechanisms with physical and virtual representations. Journal of Learning Analytics4(2), 240–263. https://doi.org/10.18608/jla.2017.42.16 

Rebolj, V. (2008). E-izobraževanje: Skozi očala pedagogike in didaktike [E-education through the lens of pedagogy and didactics]. Didakta.

Reed, H. C., Drijvers, P., & Kirschner, P. A. (2010). Effects of attitudes and behaviours on learning mathematics with computer tools. Computers & Education, 55(1), 1–15. https://doi.org/10.1016/j.compedu.2009.11.012  

Republiški izpitni center. (2014). Nacionalno preverjanje znanja iz matematike v 9. razredu [National Assessment of Knowledge – mathematics (9th grade)]. Državni izpitni center. https://bit.ly/3xT9AfD  

Sagadin, J. (1993). Poglavja iz metodologije pedagoškega raziskovanja [Chapters in methodology of educational research]. Zavod Republike Slovenije za šolstvo in šport.

Selwyn, N. (2011). Editorial: In praise of pessimism—the need for negativity in educational technology. British Journal of Educational Technology, 42(5), 713–718. https://doi.org/10.1111/j.1467-8535.2011.01215.x

Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237. https://doi.org/10.1016/S0959-4752(02)00022-1

Sočan, G. (2011). Postopki klasične testne teorije [The procedures of classical testing theory]. Znanstvena založba Filozofske fakultete.

Thurm, D., & Barzel, B. (2022). Teaching mathematics with technology: A multidimensional analysis of teacher beliefs. Educational Studies in Mathematics, 109, 41–63. https://doi.org/10.1007/s10649-021-10072-x

Tratar, J., Mahnič, B., Lešnik, V., Štaher, A., Pev, M., Miklavčič-Jenič, A., Hauptman, A., & Tadina Bence, V. (2014). Matematika 7: i-učbenik za matematiko v 7. razredu osnovne šole [7th Grade Math Interactive Notebook]. Zavod Republike Slovenije za šolstvo. https://eucbeniki.sio.si/matematika7/3300/index.html

Viberg, O., Grönlund, Å., & Andersson, A. (2020). Integrating digital technology in mathematics education: A Swedish case study, Interactive Learning Environments. Advance online publication. https://doi.org/10.1080/10494820.2020.1770801

Volk, M., Cotič, M., Zajc, M., & Istenic Starcic, A. (2017). Tablet-based cross-curricular maths vs. traditional maths classroom practice for higher-order learning outcomes. Computers & Education, 114, 1–23. https://doi.org/10.1016/j.compedu.2017.06.004

Whiteley, W. (2004, July 4-11). Visualization in mathematics: Claims and questions towards a research program [Paper presentation]. 10th International Congress on Mathematical Education, Technical University of Denmark, Denmark.

Wright, D. (2010). Orchestrating the instruments: Integrating ICT in the secondary mathematics classroom through handheld technology networks. Technology, Pedagogy and Education, 19(2), 277–284. https://doi.org/10.1080/1475939X.2010.491239

Zbiek, R. M. (2003). Using technology to foster mathematical meaning through problem solving. In H. L. Schoen, & R. I. Charles (Eds.), Teaching mathematics through problem solving (pp. 93–104). The National Council of Teachers of Mathematics, Inc.

...